Efficient Disposal Equilibria of Pseudomarkets

Andy McLennan

Workshop on Game Theory
Institute for Mathematical Sciences
National University of Singapore

June 2018
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
- They trade on a market.
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
- They trade on a market.

Several unusual features are natural:
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
- They trade on a market.

Several unusual features are natural:

- Objects may be indivisible.
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
- They trade on a market.

Several unusual features are natural:

- Objects may be indivisible.
- Free disposal can be important.
Introduction

A *pseudomarket* is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
- They trade on a market.

Several unusual features are natural:

- Objects may be indivisible.
- Free disposal can be important.
- Some consumers may be sated.
A pseudomarket is a mechanism for allocating a collectively owned endowment in settings where monetary transfers are impossible or inappropriate.

- Agents are endowed with artificial currency or commodity bundles.
- They trade on a market.

Several unusual features are natural:

- Objects may be indivisible.
- Free disposal can be important.
- Some consumers may be sated.

Outcomes may need to be computed.
Plan of the Talk

• Closely related literature will be reviewed.
Plan of the Talk

• Closely related literature will be reviewed.
• The main contribution is an existence-of-competitive-equilibrium result.
Plan of the Talk

• Closely related literature will be reviewed.
• The main contribution is an existence-of-competitive-equilibrium result.
 • This result encompasses existence results in related literature, as well as classical existence theorems.
Plan of the Talk

• Closely related literature will be reviewed.
• The main contribution is an existence-of-competitive-equilibrium result.
 • This result encompasses existence results in related literature, as well as classical existence theorems.
 • It is more general in ways that are relevant for certain applications.
Plan of the Talk

- Closely related literature will be reviewed.
- The main contribution is an existence-of-competitive-equilibrium result.
 - This result encompasses existence results in related literature, as well as classical existence theorems.
 - It is more general in ways that are relevant for certain applications.
 - The proof has some interesting and novel features.
Plan of the Talk

• Closely related literature will be reviewed.
• The main contribution is an existence-of-competitive-equilibrium result.
 • This result encompasses existence results in related literature, as well as classical existence theorems.
 • It is more general in ways that are relevant for certain applications.
 • The proof has some interesting and novel features.
• Two open problems are described.
Hylland and Zeckhauser (1979) study a setting in which there are:
Hylland and Zeckhauser (1979)

Hylland and Zeckhauser (henceforth HZ) study a setting in which there are:

- A finite set of agents.
Hylland and Zeckhauser (1979)

Hylland and Zeckhauser (henceforth HZ) study a setting in which there are:

- A finite set of agents.
- A finite set of indivisible objects.
Hylland and Zeckhauser (1979)

Hylland and Zeckhauser (henceforth HZ) study a setting in which there are:

- A finite set of agents.
- A finite set of indivisible objects.
 - Each object has an integral capacity.
Hylland and Zeckhauser (1979)

Hylland and Zeckhauser (henceforth HZ) study a setting in which there are:

- A finite set of agents.
- A finite set of indivisible objects.
 - Each object has an integral capacity.
- Each agent has a vNM utility over the objects.
Hylland and Zeckhauser (1979)

Hylland and Zeckhauser (henceforth HZ) study a setting in which there are:

• A finite set of agents.
• A finite set of indivisible objects.
 • Each object has an integral capacity.
• Each agent has a vNM utility over the objects.

The goal is to find a probability distribution over feasible assignments of an object to each agent that is efficient and fair.
Hylland and Zeckhauser (1979)

Hylland and Zeckhauser (henceforth HZ) study a setting in which there are:

- A finite set of agents.
- A finite set of indivisible objects.
 - Each object has an integral capacity.
- Each agent has a vNM utility over the objects.

The goal is to find a probability distribution over feasible assignments of an object to each agent that is efficient and fair.

- They propose equilibrium allocations of a market with currency endowments and goods that are probabilities of being assigned to each object.
Compact Consumption Sets

Bergstrom (1976), Mas-Colell (1992), and Polemarchakis and Siconolfi (1993) study existence of general competitive equilibrium with compact consumption sets.
Compact Consumption Sets

Bergstrom (1976), Mas-Colell (1992), and Polemarchakis and Siconolfi (1993) study existence of general competitive equilibrium with compact consumption sets.

- This encompasses classical general equilibrium with more-is-always-better consumers.
Compact Consumption Sets

Bergstrom (1976), Mas-Colell (1992), and Polemarchakis and Siconolfi (1993) study existence of general competitive equilibrium with compact consumption sets.

- This encompasses classical general equilibrium with more-is-always-better consumers.
- Mas-Colell allows redistribution of sated consumers’ excess income.
Compact Consumption Sets

Bergstrom (1976), Mas-Colell (1992), and Polemarchakis and Siconolfi (1993) study existence of general competitive equilibrium with compact consumption sets.

• This encompasses classical general equilibrium with more-is-always-better consumers.
• Mas-Colell allows redistribution of sated consumers’ excess income.
• Following Gale and Mas-Colell (1975, 1979), Mas-Colell allows quite general externalities.
Compact Consumption Sets

Bergstrom (1976), Mas-Colell (1992), and Polemarchakis and Siconolfi (1993) study existence of general competitive equilibrium with compact consumption sets.

- This encompasses classical general equilibrium with more-is-always-better consumers.
- Mas-Colell allows redistribution of sated consumers’ excess income.
- Following Gale and Mas-Colell (1975, 1979), Mas-Colell allows quite general externalities.
 - Probably that could be done here, but this has not been pursued.
Compact Consumption Sets

Bergstrom (1976), Mas-Colell (1992), and Polemarchakis and Siconolfi (1993) study existence of general competitive equilibrium with compact consumption sets.

- This encompasses classical general equilibrium with more-is-always-better consumers.
- Mas-Colell allows redistribution of sated consumers’ excess income.
- Following Gale and Mas-Colell (1975, 1979), Mas-Colell allows quite general externalities.
 - Probably that could be done here, but this has not been pursued.
- These papers do not allow free disposal.
Course Allocation

At some business schools students report preferences and allocations of seats in courses are computed.
Course Allocation

At some business schools students report preferences and allocations of seats in courses are computed.

Course Allocation

At some business schools students report preferences and allocations of seats in courses are computed.

 Budish and Kessler (2016): auction and market-like mechanisms used at Wharton.
Course Allocation

At some business schools students report preferences and allocations of seats in courses are computed.

• Budish and Cantillon (2012): versions of random priority used at Harvard.
 Budish and Kessler (2016): auction and market-like mechanisms used at Wharton.

• Budish, Che, Kojima, and Milgrom (2013) (henceforth BCKM) study probabilistic allocations of seats.
Course Allocation

At some business schools students report preferences and allocations of seats in courses are computed.

 Budish and Kessler (2016): auction and market-like mechanisms used at Wharton.
- Budish, Che, Kojima, and Milgrom (2013) (henceforth BCKM) study probabilistic allocations of seats.
 - They give conditions under which assignments of probabilities can be realized by distribution over pure assignments.
Course Allocation

At some business schools students report preferences and allocations of seats in courses are computed.

- Budish, Che, Kojima, and Milgrom (2013) (henceforth BCKM) study probabilistic allocations of seats.
 - They give conditions under which assignments of probabilities can be realized by distribution over pure assignments.
 - They also give a highly restricted existence theorem generalizing HZ.
Other Pseudomarket Papers

- Eisenberg and Gale (1959) and Eisenberg (1961): equilibrium of a pari-mutuel betting system.
Other Pseudomarket Papers

• Eisenberg and Gale (1959) and Eisenberg (1961): equilibrium of a pari-mutuel betting system.

• Varian (1974): trade from equal incomes leads to allocations of a commonly owned endowment that are efficient and envy free.
Other Pseudomarket Papers

• Eisenberg and Gale (1959) and Eisenberg (1961): equilibrium of a pari-mutuel betting system.

• Varian (1974): trade from equal incomes leads to allocations of a commonly owned endowment that are efficient and envy free.

• Bogomolnaia, Moulin, Sandomirsky, and Yanovskaya (2017): division of a commonly owned endowment mixing goods and bads.
Other Pseudomarket Papers

• Eisenberg and Gale (1959) and Eisenberg (1961): equilibrium of a pari-mutuel betting system.
• Varian (1974): trade from equal incomes leads to allocations of a commonly owned endowment that are efficient and envy free.
• Bogomolnaia, Moulin, Sandomirsky, and Yanovskaya (2017): division of a commonly owned endowment mixing goods and bads.
 • Their existence results are implied by Mas-Colell’s.
Other Pseudomarket Papers

- Eisenberg and Gale (1959) and Eisenberg (1961): equilibrium of a pari-mutuel betting system.
- Varian (1974): trade from equal incomes leads to allocations of a commonly owned endowment that are efficient and envy free.
 - Their existence results are implied by Mas-Colell’s.

Of course there is also a vast literature on matching and school choice. In such models usually (not always!) both sides of the market are strategic.
The Model

We work in a general equilibrium setting:
The Model

We work in a general equilibrium setting:

• There are ℓ goods indexed by h.
The Model

We work in a general equilibrium setting:

- There are ℓ goods indexed by h.
- There are m agents indexed by i. For each i there are:
The Model

We work in a general equilibrium setting:

- There are \(\ell \) goods indexed by \(h \).
- There are \(m \) agents indexed by \(i \). For each \(i \) there are:
 - a compact convex consumption set \(X_i \subset \mathbb{R}^{\ell} \);
The Model

We work in a general equilibrium setting:

- There are \(\ell \) goods indexed by \(h \).
- There are \(m \) agents indexed by \(i \). For each \(i \) there are:
 - a compact convex consumption set \(X_i \subset \mathbb{R}^\ell \);
 - a continuous quasiconcave utility function \(u_i : X_i \rightarrow \mathbb{R} \);
The Model

We work in a general equilibrium setting:

• There are ℓ goods indexed by h.
• There are m agents indexed by i. For each i there are:
 • a compact convex consumption set $X_i \subset \mathbb{R}^\ell$;
 • a continuous quasiconcave utility function $u_i : X_i \to \mathbb{R}$;
 • an endowment $\omega_i \in \mathbb{R}^\ell$.
The Model

We work in a general equilibrium setting:

- There are \(\ell \) goods indexed by \(h \).
- There are \(m \) agents indexed by \(i \). For each \(i \) there are:
 - a compact convex consumption set \(X_i \subset \mathbb{R}^\ell \);
 - a continuous quasiconcave utility function \(u_i : X_i \to \mathbb{R} \);
 - an endowment \(\omega_i \in \mathbb{R}^\ell \).
- There are compact production sets \(Y_1, \ldots, Y_n \subset \mathbb{R}^\ell \) that contain the origin.
The Model

We work in a general equilibrium setting:

- There are ℓ goods indexed by h.
- There are m agents indexed by i. For each i there are:
 - a compact convex consumption set $X_i \subset \mathbb{R}^\ell$;
 - a continuous quasiconcave utility function $u_i : X_i \to \mathbb{R}$;
 - an endowment $\omega_i \in \mathbb{R}^\ell$.
- There are compact production sets $Y_1, \ldots, Y_n \subset \mathbb{R}^\ell$ that contain the origin.
- There is an $m \times n$ matrix θ of nonnegative ownership shares such that $\sum_i \theta_{ij} = 1$ for all j.
• If $u_i(x_i) = \max_{x_i' \in X_i} u_i(x_i')$, then agent i is sated at $x_i \in X_i$ and x_i is a bliss point for i. Otherwise i is unsated at x_i.
• If $u_i(x_i) = \max_{x_i' \in X_i} u_i(x_i')$, then agent i is *sated* at $x_i \in X_i$ and x_i is a *bliss point* for i. Otherwise i is *unsated* at x_i.

• Let $X = \prod_i X_i$ and $Y = \prod_j Y_j$.
• If \(u_i(x_i) = \max_{x'_i \in X_i} u_i(x'_i) \), then agent \(i \) is sated at \(x_i \in X_i \) and \(x_i \) is a bliss point for \(i \). Otherwise \(i \) is unsated at \(x_i \).

• Let \(X = \prod_i X_i \) and \(Y = \prod_j Y_j \).

• For each \(j \) and \(p \in \mathbb{R}^\ell \) let

\[
\pi_j(p) = \max_{y_j \in Y_j} \langle p, y_j \rangle, \quad M_j(p) = \arg\max_{y_j \in Y_j} \langle p, y_j \rangle.
\]
• If \(u_i(x_i) = \max_{x_i' \in X_i} u_i(x_i') \), then agent \(i \) is \textit{sated} at \(x_i \in X_i \) and \(x_i \) is a \textit{bliss point} for \(i \). Otherwise \(i \) is \textit{unsated} at \(x_i \).

• Let \(X = \prod_i X_i \) and \(Y = \prod_j Y_j \).

• For each \(j \) and \(p \in \mathbb{R}^\ell \) let

\[
\pi_j(p) = \max_{y_j \in Y_j} \langle p, y_j \rangle, \quad M_j(p) = \arg\max_{y_j \in Y_j} \langle p, y_j \rangle.
\]

• For each \(i \) and \(p \in \mathbb{R}^\ell \), \(i \)’s total income is

\[
\mu_i(p) = \langle p, \omega_i \rangle + \sum_j \theta_{ij} \pi_j(p).
\]
Efficient Disposal Equilibrium

A triple \((p, x, y) \in \mathbb{R}_+^\ell \times X \times Y\) is an efficient disposal equilibrium (EDE) if:
A triple \((p, x, y) \in \mathbb{R}_+^l \times X \times Y\) is an efficient disposal equilibrium (EDE) if:

(a) For each \(i\) there is no \(x'_i \in X_i\) such that
\[
\langle p, x'_i \rangle \leq \langle p, x_i \rangle \quad \text{and} \quad u_i(x'_i) > u_i(x_i),
\]
and there is no \(x'_i \in X_i\) such that
\[
\langle p, x'_i \rangle < \langle p, x_i \rangle \quad \text{and} \quad u_i(x'_i) \geq u_i(x_i).
\]
Efficient Disposal Equilibrium

A triple \((p, x, y) \in \mathbb{R}^l_+ \times X \times Y\) is an efficient disposal equilibrium (EDE) if:

(a) For each \(i\) there is no \(x'_i \in X_i\) such that \(\langle p, x'_i \rangle \leq \langle p, x_i \rangle\) and \(u_i(x'_i) > u_i(x_i)\), and there is no \(x'_i \in X_i\) such that \(\langle p, x'_i \rangle < \langle p, x_i \rangle\) and \(u_i(x'_i) \geq u_i(x_i)\).

(b) For each \(i\), if \(i\) is unsated at \(x_i\), then \(\langle p, x_i \rangle \geq \mu_i(p)\).
Efficient Disposal Equilibrium

A triple \((p, x, y) \in \mathbb{R}^l_+ \times X \times Y\) is an efficient disposal equilibrium (EDE) if:

(a) For each \(i\) there is no \(x'_i \in X_i\) such that \(\langle p, x'_i \rangle \leq \langle p, x_i \rangle\) and \(u_i(x'_i) > u_i(x_i)\), and there is no \(x'_i \in X_i\) such that \(\langle p, x'_i \rangle < \langle p, x_i \rangle\) and \(u_i(x'_i) \geq u_i(x_i)\).

(b) For each \(i\), if \(i\) is unsated at \(x_i\), then \(\langle p, x_i \rangle \geq \mu_i(p)\).

(c) For each \(j\), \(y_j \in M_j(p)\).
Efficient Disposal Equilibrium

A triple $(p, x, y) \in \mathbb{R}_+^\ell \times X \times Y$ is an efficient disposal equilibrium (EDE) if:

(a) For each i there is no $x'_i \in X_i$ such that $\langle p, x'_i \rangle \leq \langle p, x_i \rangle$ and $u_i(x'_i) > u_i(x_i)$, and there is no $x'_i \in X_i$ such that $\langle p, x'_i \rangle < \langle p, x_i \rangle$ and $u_i(x'_i) \geq u_i(x_i)$.

(b) For each i, if i is unsated at x_i, then $\langle p, x_i \rangle \geq \mu_i(p)$.

(c) For each j, $y_j \in M_j(p)$.

(d) $\sum_i x_i \leq \omega + \sum_j y_j$.

Efficient Disposal Equilibrium

A triple \((p, x, y) \in \mathbb{R}^l_+ \times X \times Y\) is an efficient disposal equilibrium (EDE) if:

(a) For each \(i\) there is no \(x'_i \in X_i\) such that \(\langle p, x'_i \rangle \leq \langle p, x_i \rangle\) and \(u_i(x'_i) > u_i(x_i)\), and there is no \(x'_i \in X_i\) such that \(\langle p, x'_i \rangle < \langle p, x_i \rangle\) and \(u_i(x'_i) \geq u_i(x_i)\).

(b) For each \(i\), if \(i\) is unsated at \(x_i\), then \(\langle p, x_i \rangle \geq \mu_i(p)\).

(c) For each \(j\), \(y_j \in M_j(p)\).

(d) \(\sum_i x_i \leq \omega + \sum_j y_j\).

(e) For all \(h\), if \(\sum_i x_{ih} < \omega_h + \sum_j y_{jh}\), then \(p_h = 0\).
The Main Result

Let $e = (1, \ldots, 1) \in \mathbb{R}^\ell$, $V_0 = \{ x \in \mathbb{R}^\ell : \langle e, x \rangle = 0 \}$.
The Main Result

Let \(e = (1, \ldots, 1) \in \mathbb{R}^\ell \), \(V_0 = \{ x \in \mathbb{R}^\ell : \langle e, x \rangle = 0 \} \).

Theorem: If, for each \(i \) there is an \(x_i^0 \in X_i \) such that
\(x_i^0 \leq \omega_i \), \(X_i \subset x_i^0 + V_0 \), and \(x_i^0 \) is in the interior
(relative to \(x_i + V_0 \)) of \(X_i \), then for any \(\alpha \in \mathbb{R}^m_+ \) there
is an EDE \((p, x, y) \) such that

\[
\langle p, x_i \rangle - \mu_i(p) = \frac{\alpha_i}{\sum_{i' \in U} \alpha_{i'}} \left(\sum_{i'' \in S} \mu_{i''}(p) - \langle p, x_{i''} \rangle \right)
\]

for all \(i \in U \), where \(U \) is the set of \(i \) that are unsated
at \(x_i \) and \(S = \{1, \ldots, m\} \setminus U \) is the set of \(i \) that are
sated at \(x_i \).
The Main Result

Let $e = (1, \ldots, 1) \in \mathbb{R}^\ell$, $V_0 = \{ x \in \mathbb{R}^\ell : \langle e, x \rangle = 0 \}$.

Theorem: If, for each i there is an $x_i^0 \in X_i$ such that $x_i^0 \leq \omega_i$, $X_i \subset x_i^0 + V_0$, and x_i^0 is in the interior (relative to $x_i + V_0$) of X_i, then for any $\alpha \in \mathbb{R}^m_+$ there is an EDE (p, x, y) such that

$$
\langle p, x_i \rangle - \mu_i(p) = \frac{\alpha_i}{\sum_{i' \in U} \alpha_{i'}} \left(\sum_{i'' \in S} \mu_{i''}(p) - \langle p, x_{i''} \rangle \right)
$$

for all $i \in U$, where U is the set of i that are unsated at x_i and $S = \{1, \ldots, m\} \setminus U$ is the set of i that are sated at x_i.

This generalizes all prior existence results.
Approaches to the Proof

The set up:
Approaches to the Proof

The set up:

- In HZ the consumption set is the simplex over the objects, so it is contained in a translate of V_0.
Approaches to the Proof

The set up:

- In HZ the consumption set is the simplex over the objects, so it is contained in a translate of V_0.
- In Mas-Colell’s setting we introduce an artificial worthless good to make consumption sets parallel to V_0 and production sets contained in V_0.
Approaches to the Proof

The set up:

- In HZ the consumption set is the simplex over the objects, so it is contained in a translate of V_0.
- In Mas-Colell’s setting we introduce an artificial worthless good to make consumption sets parallel to V_0 and production sets contained in V_0.

Prices and excess demand:
Approaches to the Proof

The set up:

- In HZ the consumption set is the simplex over the objects, so it is contained in a translate of V_0.
- In Mas-Colell’s setting we introduce an artificial worthless good to make consumption sets parallel to V_0 and production sets contained in V_0.

Prices and excess demand:

- The natural space of prices is V_0, which has two problems:
Approaches to the Proof

The set up:

- In HZ the consumption set is the simplex over the objects, so it is contained in a translate of V_0.
- In Mas-Colell’s setting we introduce an artificial worthless good to make consumption sets parallel to V_0 and production sets contained in V_0.

Prices and excess demand:

- The natural space of prices is V_0, which has two problems:
 - Budget sets are not lower semicontinuous at 0.
Approaches to the Proof

The set up:

- In HZ the consumption set is the simplex over the objects, so it is contained in a translate of V_0.
- In Mas-Colell’s setting we introduce an artificial worthless good to make consumption sets parallel to V_0 and production sets contained in V_0.

Prices and excess demand:

- The natural space of prices is V_0, which has two problems:
 - Budget sets are not lower semicontinuous at 0.
 - Aggregate demand may be less valuable than aggregate supply because of satiation.
Our Methods

There are two main innovations:
Our Methods

There are two main innovations:

• Each consumer trades in the hyperplane parallel to V_0 that contains her endowment, then free disposes to a point in her consumption set.
Our Methods

There are two main innovations:

• Each consumer trades in the hyperplane parallel to V_0 that contains her endowment, then free disposes to a point in her consumption set.

• We introduce a small endowment of an artificial good 0 that is always desired.
Our Methods

There are two main innovations:

- Each consumer trades in the hyperplane parallel to V_0 that contains her endowment, then free disposes to a point in her consumption set.
- We introduce a small endowment of an artificial good 0 that is always desired.

Let $V = \mathbb{R} \times V_0$.
Our Methods

There are two main innovations:

- Each consumer trades in the hyperplane parallel to V_0 that contains her endowment, then free disposes to a point in her consumption set.
- We introduce a small endowment of an artificial good 0 that is always desired.

Let $V = \mathbb{R} \times V_0$.

- For each i let $\tilde{X}_i = [-1, \tau_i] \times X_i$ for some sufficiently large τ_i.
Our Methods

There are two main innovations:

• Each consumer trades in the hyperplane parallel to V_0 that contains her endowment, then free disposes to a point in her consumption set.

• We introduce a small endowment of an artificial good 0 that is always desired.

Let $V = \mathbb{R} \times V_0$.

• For each i let $\tilde{X}_i = [-1, \tau_i] \times X_i$ for some sufficiently large τ_i.

• Let $\tilde{u}_i(\tilde{x}_{i0}, x_i) = \tilde{x}_{i0} + u_i(x_i)$.
Our Methods

There are two main innovations:

- Each consumer trades in the hyperplane parallel to V_0 that contains her endowment, then free disposes to a point in her consumption set.
- We introduce a small endowment of an artificial good 0 that is always desired.

Let $V = \mathbb{R} \times V_0$.

- For each i let $\tilde{X}_i = [-1, \tau_i] \times X_i$ for some sufficiently large τ_i.

 - Let $\tilde{u}_i(\tilde{x}_i, x_i) = \tilde{x}_i0 + u_i(x_i)$.

- For each j let $\tilde{Y}_j = \{0\} \times Y_j$.
• For a small $\varepsilon > 0$ let

$$S_\varepsilon = \{ \tilde{p} = (\tilde{p}_0, p) \in V : \|\tilde{p}\| = 1 \text{ and } \tilde{p}_0 \geq \varepsilon \}.$$
• For a small $\varepsilon > 0$ let

$$S_\varepsilon = \{ \tilde{p} = (\tilde{p}_0, p) \in V : \|\tilde{p}\| = 1 \text{ and } \tilde{p}_0 \geq \varepsilon \}.$$

• If excess demand $\tilde{Z}(\tilde{p})$ is defined naturally (and a certain additional condition holds) then:
• For a small $\varepsilon > 0$ let

$$S_\varepsilon = \{ \tilde{p} = (\tilde{p}_0, p) \in V : \|\tilde{p}\| = 1 \text{ and } \tilde{p}_0 \geq \varepsilon \}.$$

• If excess demand $\tilde{Z}(\tilde{p})$ is defined naturally (and a certain additional condition holds) then:
 • \tilde{Z} is upper hemicontinuous.
• For a small $\varepsilon > 0$ let

$$S_\varepsilon = \{ \tilde{p} = (\tilde{p}_0, p) \in V : \|\tilde{p}\| = 1 \text{ and } \tilde{p}_0 \geq \varepsilon \}.$$

• If excess demand $\tilde{Z}(\tilde{p})$ is defined naturally (and a certain additional condition holds) then:
 • \tilde{Z} is upper hemicontinuous.
 • $\langle \tilde{p}, \tilde{z} \rangle = 0$ if $\tilde{z} \in \tilde{Z}(\tilde{p})$ (all income is spent).
• For a small $\varepsilon > 0$ let

$$S_\varepsilon = \{ \tilde{p} = (\tilde{p}_0, p) \in V : \|\tilde{p}\| = 1 \text{ and } \tilde{p}_0 \geq \varepsilon \}.$$

• If excess demand $\tilde{Z}(\tilde{p})$ is defined naturally (and a certain additional condition holds) then:

• \tilde{Z} is upper hemicontinuous.
• $\langle \tilde{p}, \tilde{z} \rangle = 0$ if $\tilde{z} \in \tilde{Z}(\tilde{p})$ (all income is spent).
• Of $\tilde{p}_0 = \varepsilon$, then $\tilde{z}_0 > 0$ for all $\tilde{z} \in \tilde{Z}(\tilde{p})$.
• For a small $\varepsilon > 0$ let

$$S_\varepsilon = \{ \tilde{p} = (\tilde{p}_0, p) \in V : \|\tilde{p}\| = 1 \text{ and } \tilde{p}_0 \geq \varepsilon \}.$$

• If excess demand $\tilde{Z}(\tilde{p})$ is defined naturally (and a certain additional condition holds) then:
 • \tilde{Z} is upper hemicontinuous.
 • $\langle \tilde{p}, \tilde{z} \rangle = 0$ if $\tilde{z} \in \tilde{Z}(\tilde{p})$ (all income is spent).
 • Of $\tilde{p}_0 = \varepsilon$, then $\tilde{z}_0 > 0$ for all $\tilde{z} \in \tilde{Z}(\tilde{p})$.
 • Thus \tilde{Z} is an uhc vector field correspondence that is inward pointing on the boundary of S_ε, so the (generalized) Poincaré-Hopf theorem gives a $\tilde{p}^* \in S_\varepsilon$ such that $0 \in \tilde{Z}(\tilde{p}^*)$.
A Technical Finesse

Recall that a *polyhedron* in \mathbb{R}^ℓ is an intersection of finitely many closed half spaces, and a *polytope* is a bounded polyhedron.
A Technical Finesse

Recall that a *polyhedron* in \mathbb{R}^ℓ is an intersection of finitely many closed half spaces, and a *polytope* is a bounded polyhedron.

Proposition: If P_1 and P_2 are polyhedra in \mathbb{R}^ℓ, $Q = \{ q \in \mathbb{R}^\ell = (P_1 + q) \cap P_2 \neq \emptyset \}$, and $I : Q \to \mathbb{R}^\ell$ is the correspondence $I(q) = (P_1 + q) \cap P_2$, then I is continuous.
A Technical Finesse

Recall that a polyhedron in \mathbb{R}^ℓ is an intersection of finitely many closed half spaces, and a polytope is a bounded polyhedron.

Proposition: If P_1 and P_2 are polyhedra in \mathbb{R}^ℓ, $Q = \{ q \in \mathbb{R}^\ell = (P_1 + q) \cap P_2 \neq \emptyset \}$, and $I : Q \to \mathbb{R}^\ell$ is the correspondence $I(q) = (P_1 + q) \cap P_2$, then I is continuous.

- For each i let \overline{X}_i be the set of bliss points in X_i.
A Technical Finesse

Recall that a *polyhedron* in \mathbb{R}^ℓ is an intersection of finitely many closed half spaces, and a *polytope* is a bounded polyhedron.

Proposition: If P_1 and P_2 are polyhedra in \mathbb{R}^ℓ, $Q = \{ q \in \mathbb{R}^\ell = (P_1 + q) \cap P_2 \neq \emptyset \}$, and $I : Q \to \mathbb{R}^\ell$ is the correspondence $I(q) = (P_1 + q) \cap P_2$, then I is continuous.

- For each i let \overline{X}_i be the set of bliss points in X_i.

We take a sequence of expanded economies given by a sequence of endowments of the artificial good that go to zero and a sequence of polyhedra $X_i^k \subset X_i$ such that $X_i^k \to X_i$ and $X_i^k \cap \overline{X}_i \to \overline{X}_i$.
Concluding Remarks

The paper’s final section points to two open problems:
Concluding Remarks

The paper’s final section points to two open problems:

- In the Hylland-Zeckhauser model, is the set of equilibria finite for generic utilities?
Concluding Remarks

The paper’s final section points to two open problems:

• In the Hylland-Zeckhauser model, is the set of equilibria finite for generic utilities?
• Is the problem of computing an equilibrium of the Hylland Zeckhauser model PPAD-complete?
Concluding Remarks

The paper’s final section points to two open problems:

• In the Hylland-Zeckhauser model, is the set of equilibria finite for generic utilities?
• Is the problem of computing an equilibrium of the Hylland Zeckhauser model PPAD-complete?

The traditional concerns of general equilibrium theory are (mostly) meaningful and conceptually pertinent in relation to pseudomarkets, so one can easily produce a host of original and meaningful problems for further research.