Limit theorems for sequential MCMC methods

Axel Finke1 \quad Arnaud Doucet2 \quad Adam M. Johansen3

1DSAP, NUS \quad 2Dept of Statistics, University of Oxford \quad 3Dept of Statistics, University of Warwick; The Alan Turing Institute

4th September 2018
Standard PFs and MCMC-PFs

Convergence analysis of MCMC-PFs

Application to state-space models

Numerical illustrations
Summary

- **Sequential MCMC methods a.k.a. MCMC-PFs:**
 - proposed in Berzuini et al. (1997), extended in Septier et al. (2009); Septier and Peters (2016); Finke et al. (2016).

- **Difference with (standard) particle filters (PFs):**
 - PFs sample/resample particles conditionally independently,
 - MCMC-PFs sample/resample particles jointly according to a Markov chain.

- **This work:**
 - convergence analysis of MCMC-PFs;
 - guidance on when to use standard PFs/MCMC-PFs
Path-space Feynman–Kac model

Setup & notation:

- **path-space** formulation:
 \(x_n := x_{1:n} = (x_{n-1}, x_n) \in E_n := E_{n-1} \times E, \)
- mutation kernels: \(M_n(x_{n-1}, dx_n), \)
- bounded potential functions: \(G_n(x_n) \in (0, 1]. \)

Goal: approximate distributions \((\eta_n)_{n\geq 1}\) on \((E_n)_{n\geq 1}\):

\[
\eta_n(dx_n) \propto \gamma_n(dx_n) := \eta_1 Q_{1,n}(dx_n),
\]

\[
Q_{p,n}(dx_n)(x_p) := \prod_{q=p}^n G_{q-1}(x_{q-1}) M_q(x_{q-1}, dx_q),
\]

- unknown normalising constant: \(Z_n := \gamma_n(1), \)
- recursive definition: \(\eta_n = \Phi_n^{\eta_{n-1}}, \) where

\[
\Phi_n^\mu(dx_n) := \frac{G_{n-1}(x_{n-1})}{\mu(G_{n-1})} [\mu \otimes M_n](dx_n).
\]
Example: Bootstrap PF flow I

State-space model:

- Bivariate Markov chain \((X_n, Y_n)_{n \in \mathbb{N}}\),
- with transition kernel \(f(dx_n|x_{n-1})g(y_n|x_n)dy_n\),
- only \(Y_n = y_n\) is observed; \(X_n\) is latent.

\[
\begin{align*}
Y_{n-1} & \quad \xleftarrow{g} \quad Y_n \\
X_{n-2} \quad f \quad X_{n-1} \quad f \quad X_n \quad f \quad X_{n+1}
\end{align*}
\]
Example: Bootstrap PF flow II

Take

\[G_n(x_n) := g(y_n|x_n), \]
\[M_n(x_{n-1}, dx_n) := f(dx_n|x_{n-1}). \]

Then

\[\eta_n(dx_n) = p(dx_{1:n}|y_{1:n-1}) \]
\[= \Phi_n^{\eta_{n-1}}(dx_n) \]
\[= \frac{\eta_{n-1}(dx_{n-1})G_{n-1}(x_{n-1})}{\eta_{n-1}(G_{n-1})}M_n(x_{n-1}, dx_n) \]
\[= \frac{p(dx_{1:n-1}|y_{1:n-2})g(y_{n-1}|x_{n-1})}{\int p(dx'_{1:n-1}|y_{1:n-2})g(y_{n-1}|x'_{n-1})f(dx_n|x_{n-1})}f(dx_n|x_{n-1}), \]

as well as \(\mathcal{Z}_n = p(y_{1:n-1}) \).
• Problem: η_n is intractable.
• Idea: recursively construct approximation η_n^N of $\eta_n = \Phi^{\eta_{n-1}}_n$.
 1. given $\eta_{n-1}^N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{n-1}^i}$, obtain the mixture
 $$
 \Phi^{\eta_{n-1}^N}_n = \sum_{i=1}^{N} \frac{G_{n-1}(\xi_{n-1}^i)}{\sum_{j=1}^{N} G_{n-1}(\xi_{n-1}^j)} \left[\delta_{\xi_{n-1}^i} \otimes M_n \right],
 $$
 2. sample N particles $\xi_1^N \ldots, \xi_N^N$ (approximately) from $\Phi^{\eta_{n-1}^N}_n$,
 3. approximate η_n by $\eta_{n}^N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i^n}$.

Algorithm (PF). In Step 2, sample $\xi_1^N \ldots, \xi_N^N \overset{iid}{\sim} \Phi^{\eta_{n-1}^N}_n$.

Algorithm (MCMC-PF). In Step 2,
- initialise $\xi_1^n \sim \kappa_{n-1}^{\eta_n^N} \approx \Phi^{\eta_{n-1}^N}_n$,
- sample $\xi_i^n \sim K_{n-1}^{\eta_n^N}(\xi_{i-1}^N, \cdot)$, for $i = 2, \ldots, N$.

\(\Phi^{\eta_{n-1}^N}_n\)-invariant MCMC kernel
Standard PFs and MCMC-PFs

Convergence analysis of MCMC-PFs

Application to state-space models

Numerical illustrations
• Recall: $\eta_n(dx_n) = \gamma_n(dx_n)/\mathcal{Z}_n$.

• Usual estimates of $\gamma_n(\varphi_n)$ and \mathcal{Z}_n:

\[
\gamma^N_n(\varphi_n) := \eta^N_n(\varphi_n) \prod_{p=1}^{n-1} \eta^N_p(G_p),
\]
\[
\mathcal{Z}^N_n := \gamma^N_n(1) = \prod_{p=1}^{n-1} \frac{1}{N} \sum_{i=1}^{N} G_p(\xi^i_p).
\]

Proposition (unbiasedness). For any $n \geq 1$, $N \geq 1$ and $\varphi_n \in \mathcal{B}(E_n)$, if the chains are initialised from stationarity, i.e. if $\kappa^\mu_p = \Phi^\mu_p$ for $1 \leq p \leq n$,

1. $\mathbb{E}[\gamma^N_n(\varphi_n)] = \gamma_n(\varphi_n)$,
2. $\mathbb{E}[\mathcal{Z}^N_n] = \mathcal{Z}_n$.

Assumptions

A1 For any \(n \geq 1 \), there exists \(i_n \in \mathbb{N} \) such that
\[
\sup_{\mu \in \mathcal{P}(E_{n-1})} \beta((K_n^\mu)^{i_n}) < 1,
\]
where \(\beta(K) := \sup_{x,y} \|K(x, \cdot) - K(y, \cdot)\| \).

A2 For any \(n \geq 1 \), there exists a constant \(\bar{\Gamma}_n < \infty \) and a family of bounded integral operators \((\Gamma_n^\mu)_{\mu \in \mathcal{P}(E_{n-1})}\) from \(\mathcal{B}(E_{n-1}) \) to \(\mathcal{B}(E_n) \) s.t. for any \((\mu, \nu) \in \mathcal{P}(E_{n-1})^2\) and any \(f_n \in \mathcal{B}(E_n) \),
\[
\|[K_n^\mu - K_n^\nu](f_n)\| \leq \int_{\mathcal{B}(E_{n-1})} |[\mu - \nu](g)| \Gamma_n^\mu(f_n, dg)
\]
and
\[
\int_{\mathcal{B}(E_{n-1})} g \|\Gamma_n^\mu(f_n, dg) \leq \|f_n\| \bar{\Gamma}_n.
\]

- strong but similar to assumptions in Del Moral and Doucet (2010); Brockwell et al. (2010); Bercu et al. (2012),
- satisfied, e.g. if \(K_n^\mu \) is an independent MH kernel & \(E \) finite.
Proposition (\mathbb{L}_p-error bound). Under $A1$, for any $n, p \geq 1$, there exist $a_n, b_p < \infty$ such that for any $\varphi_n \in B(E_n)$ and any $N \geq 1$,

$$
\mathbb{E}
\left[
\left[
\left|
\eta_n^N - \eta_n
\right|
\left|
\varphi_n
\right|
\right]^p
\right]^{\frac{1}{p}} \leq \frac{a_n b_p}{\sqrt{N}} \|\varphi_n\|.
$$

- Under strong mixing assumptions and if $\varphi_n(x_{1:n}) = \varphi(x_n)$,
 $$\sup_{n \geq 1} a_n < \infty.$$

Corollary (strong law of large numbers). Under $A1$, for any $n \geq 1$ and $\varphi_n \in B(E_n)$, as $N \to \infty$,

1. $\gamma_n^N(\varphi_n) \to \text{a.s.} \gamma_n(\varphi_n)$,
2. $\eta_n^N(\varphi_n) \to \text{a.s.} \eta_n(\varphi_n)$.
For any ν-invariant Markov kernel K, define the integrated autocorrelation time

$$iact_K[\varphi] := 1 + 2 \sum_{l=1}^{\infty} \frac{\text{cov}_\nu[\varphi, K^l(\varphi)]}{\text{var}_\nu[\varphi]}.$$

Proposition (central limit theorem). Under A1–A2, for any $n \geq 1$ and any $\varphi_n \in \mathcal{B}(E_n)$, as $N \to \infty$,

1. $\sqrt{N}[\gamma_n^N/\gamma_n(1) - \eta_n](\varphi_n) \to_d N(0, \sigma_n^2[\varphi_n])$,

2. $\sqrt{N}[\eta_n^N - \eta_n](\varphi_n) \to_d N(0, \sigma_n^2[\varphi_n - \eta_n(\varphi_n)])$,

with asymptotic variance

$\sigma_n^2[\cdot] := \sum_{p=1}^{n} \text{var}_{\eta_p}[\tilde{Q}_{p,n}(\cdot)] \times iact_{K_{\eta p}^{-1}}[\tilde{Q}_{p,n}(\cdot)].$

Here, $\tilde{Q}_{p,n} := \frac{\gamma_n(1)}{\gamma_p(1)} Q_{p,n}$ satisfies $\eta_p \tilde{Q}_{p,n} = \eta_n$.

- Under strong mixing assumptions and if $\varphi_n(x_{1:n}) = \varphi(x_n)$, $\sup_{n \geq 1} \sigma_n^2[\varphi_n - \eta_n(\varphi_n)] < \infty$.

Standard PFs and MCMC-PFs

Convergence analysis of MCMC-PFs

Application to state-space models

Numerical illustrations
State-space model

- Bivariate Markov chain \((X_n, Y_n)_{n \in \mathbb{N}}\),
- with transition kernel \(f(dx_n|x_{n-1})g(y_n|x_n)dy_n\),
- only \(Y_n = y_n\) is observed; \(X_n\) is latent.
Bootstrap PF (BPF)-type flow

Example (BPF flow).

\[
G_{n-1}(x_{n-1}) := g(y_{n-1}|x_{n-1}), \\
M_n(x_{n-1}, dx_n) := f(dx_n|x_{n-1}).
\]

In this case, \(\eta_n(dx_n) = p(dx_{1:n}|y_{1:n-1}) \), \(\mathcal{Z}_n = p(y_{1:n-1}) \) and

\[
\Phi_{n}^{\eta_n^{N}}(dx_n) = \sum_{i=1}^{N} \frac{g(y_{n-1}|\xi^{i}_{n-1})}{\sum_{j=1}^{N} g(y_{n-1}|\xi^{j}_{n-1})} \delta_{\xi^{i}_{n-1}}(dx_{n-1}) f(dx_n|\xi^{i}_{n-1}).
\]

⇒ can typically implement both BPF and MCMC-BPF.
Example (FA-APF flow).

\[G_{n-1}(x_{n-1}) := p(y_n | x_{n-1}) = \int g(y_n | x_n) f(dx_n | x_{n-1}) \]

\[M_n(x_{n-1}, dx_n) := p(dx_n | y_n, x_{n-1}) := \frac{g(y_n | x_n) f(dx_n | x_{n-1})}{p(y_n | x_{n-1})}. \]

In this case, \(\eta_n(dx_n) = p(dx_{1:n} | y_{1:n}) \), \(Z_n = p(y_{1:n}) \) and

\[\Phi_{n}^{\eta_{n-1}}(dx_n) = \sum_{i=1}^{N} \frac{p(y_n | \xi^i_{n-1})}{\sum_{j=1}^{N} p(y_n | \xi^j_{n-1})} \delta_{\xi^i_{n-1}}(x_{n-1})p(dx_n | y_n, \xi^i_{n-1}) \]

\[\propto \sum_{i=1}^{N} g(y_n | x_n) \delta_{\xi^i_{n-1}}(dx_{n-1}) f(dx_n | \xi^i_{n-1}). \]

\(\Rightarrow \) can typically implement MCMC-FA-APF but not FA-APF.
Variance–variance trade-off

<table>
<thead>
<tr>
<th></th>
<th>BPF flow</th>
<th>FA-APF flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard PF</td>
<td>BPF</td>
<td>MCMC-FA-APF (usually intractable)</td>
</tr>
<tr>
<td>MCMC-PF</td>
<td>MCMC-BPF</td>
<td>MCMC-FA-APF</td>
</tr>
<tr>
<td></td>
<td>(not very useful)</td>
<td></td>
</tr>
</tbody>
</table>

- PFs preferable if they target the same distribution flow.
- MCMC-PFs preferable if
 - they can target a more efficient distribution flow,
 - the MCMC kernels do not mix too poorly.

Trade-off: variance due to importance-sampling vs. variance due to additional particle (auto-)correlation.
Standard PFs and MCMC-PFs

Convergence analysis of MCMC-PFs

Application to state-space models

Numerical illustrations
Binary state-space model

Asymptotic variances (relative to the asymptotic variance of the BPF).
Estimates of the marginal likelihood (relative to the true marginal likelihood) using $N = 10,000$ particles.
Ongoing work

With Alex Thiery:

- additional dependence between particles may be more useful within ‘conditional’ SMC algorithms,
- permits ‘local’ conditional SMC algorithms,
 - better scaling in high dimensions,
 - example: embedded hidden Markov model method (Shestopaloff and Neal, 2018) which is the conditional SMC version of MCMC-PFs.
- more on this in my talk next week.

