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Introduction

This talk consists of 5 sections:

0 Introduction

1 Definitions

2 Equivalence

3 Weak Paris–Harrington–Ramsey numbers

4 Phase transition and higher dimensions

We consider the weak Paris–Harrington principle (WPH), in
connection with miniaturized Dickson’s lemma (MDL).

WPH:
A weak version of PH;
originally used by Erdös and Mills (1981).

MDL:
A Friedman-style miniaturization of Dickson’s lemma
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Results

Our main result is:

WPH and MDL are equivalent. (§2)

This equivalence is shown based on the construction between bad
colorings and sequences.

This construction has consequences:

A sharp classification of weak Paris–Harrington–Ramsey
numbers. (§3)

Bounds for weak Ramsey numbers. (§3)

A phase transition for WPH. (§4)
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Base theory RCA∗0

We will work in RCA∗0 (Recursive Comprehension Axiom ∗).

RCA∗0 consists of...

basic axioms together with exp

Σ0
0-induction

∆0
1-comprehension

RCA∗0 = RCA0−Σ
0
1-ind+Σ

0
0-ind+ exp

RCA∗0 is...

Π0
2-conservative over EFA (Elementary Function Arithmetic)

conservative over BΣ0
1 (Σ0

1 Bounding) + exp
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Section 1

Definitions
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Notation for colorings

In this talk: a,R,D,c(color),d(dimension) ∈ N, f : N→ N
identify: R = {0, ..,R−1}

X : a set

[X ]2 = {(m,n) ∈ X2 | m < n}
= the set of (unordered) pairs in X

[X ]d = {(m0, . . . ,md−1) ∈ Xd | m0 < · · ·< md−1 }
For a while, d is 2.

coloring: C : [R]2→ c

H ⊆ R is C-homogeneous if C|[H]2 is constant, i.e.
C(h,h′) =C(h′′,h′′′) for all h < h′,h′′ < h′′′ in H.
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FRT and PH

Let c (color) be given.

Finite Ramsey’s theorem for pairs:

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-homogeneous and |H|> a.
(FRTc)

The Paris–Harrington principle for pairs:

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-homogeneous and |H|> a+minH.
(PHc)
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Weak FRT and weak PH

Given C : [R]2→ c,

H ⊆ R is C-homogeneous if C|[H]2 is constant, i.e.
C(h,h′) =C(h′′,h′′′) for all h < h′,h′′ < h′′′ in H.

H = {h0 < h1 < h2 < · · ·} ⊆ R is C-weakly homogeneous if
C(hi,hi+1) =C(hi+1,hi+2) for all hi,hi+1,hi+2 in H.

Weak finite Ramsey’s theorem for pairs:

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-weakly homogeneous and |H|> a.
(WFRTc)

The weak Paris–Harrington principle for pairs:

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-weakly homogeneous and |H|> a+minH.
(WPHc)
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Appending function f

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-weakly homogeneous and |H|> a+minH.
(WPHc)

We parametrize the “id” in “a+minH”:

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-weakly homogeneous and |H|> f (a+minH).
(WPH f

c )

(Note again that we treat pairs only, for a while)
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Notation for sequences and Dickson’s lemma:

For m,n ∈ Nc, define m≤ n if (∀k) (m)k ≤ (n)k
e.g. (1,2,3)≤ (2,3,4), (1,2,3)� (2,3,1)

m0,m1, . . . in Nc is good if there exist i < j such that mi ≤ m j

A sequence which is not good (i.e. ∀i < j ∃k (mi)k > (m j)k) is bad
sequence.

Dickson’s lemma:

(DLc) Every infinite sequence m0,m1, . . . in Nc is good.
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Miniaturizing Dickson’s lemma

We consider the following Friedman-style miniaturization of
Dickson’s lemma:

Miniaturized Dickson’s lemma:

(∀a) (∃D) s.t. every sequence m0, . . . ,mD in Nc

with (∀i) |mi|∞ < f (a+ i) is good
(MDL f

c )

where |m|∞ = maxk<c(m)k (max norm).

(We have function parameter f again)
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Section 2

Equivalence
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Main theorem

Theorem 1

For every c and f , WPH f
c and MDL f

c are equivalent.

(proof)

Say C : [R]2→ c is (a, f )-bad if for every C-weakly
homogeneous set H ⊆ R, |H| ≤ f (a+minH).

m0, . . . ,mD in Nc is (a, f )-bounded if (∀i) |mi|∞ < f (a+ i).
|mi|∞ < f (a+ i) for all i. Call (a, f )-bounded bad sequences
(a, f )-bad.

A bad coloring/sequence is a counter-example for WPH f
c /MDL f

c .
The theorem is a direct consequence of the next lemma:
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Construction of bad colorings/sequences

Lemma

1 Existence of an (a, f )-bad coloring C : [R]2→ c implies
existence of an (a, f )-bad sequence m0, . . . ,mR.

2 Existence of an (a, f )-bad sequence m0, . . . ,mD implies
existence of an (a, f )-bad coloring C : [D]2→ c.

(Sketch of the proof)

1 m0, . . . ,mR is defined as: (mi)k > (m j)k whenever C(i, j) = k.

2 C : [D]2→ c is defined as: C(i, j) = k where (mi)k > (m j)k.
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Corollary: relativized WPH and DL

Theorem 1

For every c and f , WPH f
c and MDL f

c are equivalent.

Corollary 2

For every c, ∀ f WPH f
c and DLc are equivalent.

Note:

DLc↔WO(ωc)

WO(ωc+4)→∀ f PH f
c and the converse is not known
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Section 3

Weak Paris–Harrington–Ramsey numbers
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Weak Paris–Harrington–Ramsey numbers for pairs

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-weakly homogeneous and |H|> f (a+minH).
(WPH f

c )

Define R f
c (a) = the least R such that this holds.

(∀a) (∃D) s.t. every sequence m0, . . . ,mD in Nc

with (∀i) |mi|∞ < f (a+ i) is good.
(MDL f

c )

Define D f
c (a) = the least D such that this holds.

Our construction shows:

Corollary 3

R f
c (a) = D f

c (a)
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Classification for R f
c

This gives a classification for R f
c in the fast growing hierarchy,

derived from those for D f
c (Schnoebelen et al. 2011):

Corollary 4

Let γ ≥ 1.
If f is nondecreasing and a proper member of Fγ , then R f

c is a
proper member of Fγ+c−1.
Where Fγ is the class of γ-th level in the fast growing hierarchy.

Fγ is the smallest class (containing some basic functions and the
γ-th fast growing function Fγ ) which is closed under composition
and bounded primitive recursion.

Y. Omata (Tohoku Univ.) Dickson’s lemma and weak Ramsey theory 18 / 26



0. Introduction 1. Definitions 2. Equivalence 3. Weak P–H–R numbers 4. PT and higher d Ending

Weak Ramsey numbers for pairs

Define wrc(a) = the least R which witnesses

(∀a) (∃R) s.t. for every C : [R]2→ c there exists

H ⊆ R which is C-weakly homogeneous and |H|> a.
(WFRTc)

(WFRTc is WPH fa
c where fa is the constant function x 7→ a)

R f
c (a) = D f

c (a) implies the following simple formula:

Theorem 5

wrc(a) = ac

(Note: For (normal, not weak) Ramsey number rc(a), r2(5) is not
known.)

Y. Omata (Tohoku Univ.) Dickson’s lemma and weak Ramsey theory 19 / 26



0. Introduction 1. Definitions 2. Equivalence 3. Weak P–H–R numbers 4. PT and higher d Ending

Section 4

Phase Transition and higher dimensions
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Phase transition

ϕ f : a statement which has a parameter f : N→ N.
Phase Transition for ϕ f (over T ): Find functions
f0 < f1 < f2 < · · · < f such that

(∀n) T |− ϕ fn and T 6|− ϕ f

E.g. fn = n-th fast growing function, f = Ackermann function then

(∀n) IΣ1 |− Tot( fn) and IΣ1 6|− Tot( f )
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Phase transition for WPH (for pairs)

We drop colors: WPH f ≡ ∀cWPH f
c

wrc(a) = ac gives the following:

Theorem 6

1 RCA∗0 (or EFA) proves WPH f for f (x) = log(x).

2 For all n, RCA∗0 + IΣ0
1 (or PRA) does not prove WPH fn where

fn(x) = n
√

x.
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For higher dimension

We will extend WPH for higher dimensions.
Firstly define weak Ramsey number for dimension d:

Given d, c and a, wrd
c (a) is the least R such that

(∀a) (∃R) s.t. for every C : [R]d → c there exists

H ⊆ R which is C-weakly homogeneous and |H|> a.
(WFRTd

c )

Lemma

For a≥ d ≥ 1 and c≥ 1,

1 wrd
c (a)≤M⇒ wrd+1

c (a)≤ 2Md+1
,

2 wrd
c (a)≥M⇒ wrd+1

5c (a)≥ 2M.
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Bounds for wrd
c

By induction on d:

Theorem 7

1 For each (standard) d ≥ 2,

wrd
c (a)≤ 2. .

.
2ak0c}

(d−2) 2’s

where k0 = (d +1)!.

2 For each (standard) d ≥ 2, c≥ 1 and a≥ d,

wrd
k1c(a)≥ 2. .

.
2ac}

(d−2) 2’s

where k1 = 5d−2.
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Phase transition for WPH in higher dimensions

We use superscript to denote dimension:

(∀c) (∀a) (∃R) s.t. for every C : [R]d → c there exists

H ⊆ R which is C-weakly homogeneous and |H|> f (a+minH).
(WPHd, f )

Bounds for wrd
c (a) give us:

Theorem

Let d ≥ 2 standard.

1 RCA∗0 (EFA) proves WPHd, f for f (x) = log(d−1)(x).

2 For all n, RCA∗0(EFA)+ IΣ0
d−1 does not prove WPHd, fn where

fn(x) =
n
√

log(d−2)(x).
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Thank you very much!
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