Convex and Non-Convex Optimization in Image Recovery and Segmentation

Tieyong Zeng
Dept. of Mathematics, HKBU

29 May - 2 June, 2017
NUS, Singapore
Outline

1. Variational Models for Rician Noise Removal
2. Two-stage Segmentation
3. Dictionary and Weighted Nuclear Norm
Background

We assume that the noisy image f is obtained from a perfect unknown image u

$$f = u + b.$$

- b: additive Gaussian noise.
- TV-ROF:

$$\min_u \frac{\mu}{2} \int_{\Omega} (u - f)^2 dx + \int_{\Omega} |Du|,$$

where the constant $\mu > 0$, $\Omega \subset \mathbb{R}^n$.

- The MAP estimation leads to the data fitting term $\int_{\Omega} (u - f)^2$.
- Smoothness from the edge-preserving total variation (TV) term, $\int_{\Omega} |Du|$.
Rician noise with Blur

The degradation process reads

\[f = \sqrt{(Au + \eta_1)^2 + \eta_2^2}. \]

- \(A \) describes the blur operator
- The Rician noise was built from white Gaussian noise \(\eta_1, \eta_2 \sim \mathcal{N}(0, \sigma^2) \)
- The distribution has probability density

\[p(f|u) = \frac{f}{\sigma^2} e^{-\frac{(Au)^2 + f^2}{2\sigma^2}} I_0\left(\frac{A uf}{\sigma^2}\right). \]
TV-model for removing Rician noise with blur

The MAP estimation leads to:

\[
\inf_u \frac{1}{2\sigma^2} \int_\Omega (Au)^2 \, dx - \int_\Omega \log l_0 \left(\frac{Afu}{\sigma^2} \right) \, dx + \gamma \text{TV}(u),
\]

- \(l_0 \) is the solution of the zero order modified Bessel function
 \[xy'' + y' - xy = 0. \]
- the TV prior can recover sharp edges, the constant \(\gamma > 0 \)
- Non-convex!
Convex variational model for denoising and deblurring

[Getreuer-Tong-Vese, ISVC, 2011]

\[
\inf_u \int_\Omega G_\sigma(Au, f) + \gamma TV(u).
\] (1)

Let \(z = Au \) and \(c = 0.8246 \),

\[
G_\sigma(z, f) = \begin{cases}
H_\sigma(z) & \text{if } z \geq c\sigma, \\
H_\sigma(c\sigma) + H'_\sigma(c\sigma)(z - c\sigma) & \text{if } z \leq c\sigma,
\end{cases}
\]

\[
H_\sigma(z) = \frac{f^2 + z^2}{2\sigma^2} - \log I_0\left(\frac{fz}{\sigma^2}\right)
\]

\[
H'_\sigma(z) = \frac{z}{\sigma^2} - \frac{f}{\sigma^2} B\left(\frac{fz}{\sigma^2}\right)
\]

\[
B(t) = \frac{l_1(t)}{l_0(t)} \approx \frac{t^3 + 0.950037t^2 + 2.38944t}{t^3 + 1.48937t^2 + 2.57541t + 4.65314}.
\]

- Complex and difficult to derive its mathematical property.
New elegant convex TV-model

We introduce a quadratic penalty term:

\[
\inf_u \frac{1}{2\sigma^2} \int_{\Omega} (Au)^2 dx - \int_{\Omega} \log l_0 \left(\frac{Auf}{\sigma^2} \right) dx + \frac{1}{\sigma} \int_{\Omega} (\sqrt{Au} - \sqrt{f})^2 dx + \gamma \text{TV}(u),
\]

(2)
The quadratic penalty term

Why the penalty term $\int_\Omega \frac{(\sqrt{f} - \sqrt{Au})^2}{\sigma} \, dx$?

- the value of e is always bounded, where e is defined below.

Proposition 1 Suppose that the variables η_1 and η_2 independently follow the Normal distribution $\mathcal{N}(0, \sigma^2)$. Set $f = \sqrt{(u + \eta_1)^2 + \eta_2^2}$ where u is fixed and $u \geq 0$. Then we can get the following inequality,

$$e := \frac{\mathbb{E}((\sqrt{f} - \sqrt{u})^2)}{\sigma} \leq \sqrt{\frac{2}{\pi}} (\pi + 2).$$
Proof of the Proposition

Lemma 1 Assume that $a, b \in \mathbb{R}$. Then,
$|(u^2 + 2au + b^2)^{\frac{1}{4}} - u^{\frac{1}{2}}| \leq \sqrt{|a|} + \sqrt{|b|}$ is true whenever $u \geq 0$ and $|a| \leq |b|$.

- Based on the lemma, we can get

$$E((\sqrt{f} - \sqrt{u})^2) \leq 2E(|\eta_1|) + 2E((\eta_1^2 + \eta_2^2)^{\frac{1}{2}}).$$

- Set $Y := \frac{\eta_1^2 + \eta_2^2}{\sigma^2}$, where $\eta_1, \eta_2 \sim \mathcal{N}(0, \sigma^2)$. Thus, $Y \sim \chi^2(2)$.

- It can be shown that

$$E(\sqrt{Y}) = \frac{E((\eta_1^2 + \eta_2^2)^{\frac{1}{2}})}{\sigma} = \frac{\sqrt{2\pi}}{2},$$

$$E(|\eta_1|) = \sqrt{\frac{2}{\pi}} \sigma.$$
Approximation table

Table: The values of e with various values of σ for different original images u.

<table>
<thead>
<tr>
<th>Image</th>
<th>$\sigma = 5$</th>
<th>$\sigma = 10$</th>
<th>$\sigma = 15$</th>
<th>$\sigma = 20$</th>
<th>$\sigma = 25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameraman</td>
<td>0.0261</td>
<td>0.0418</td>
<td>0.0571</td>
<td>0.0738</td>
<td>0.0882</td>
</tr>
<tr>
<td>Bird</td>
<td>0.0131</td>
<td>0.0255</td>
<td>0.0371</td>
<td>0.0486</td>
<td>0.0590</td>
</tr>
<tr>
<td>Skull</td>
<td>0.0453</td>
<td>0.0754</td>
<td>0.1009</td>
<td>0.1234</td>
<td>0.1425</td>
</tr>
<tr>
<td>Leg joint</td>
<td>0.0356</td>
<td>0.0654</td>
<td>0.0906</td>
<td>0.1105</td>
<td>0.1263</td>
</tr>
</tbody>
</table>
The quadratic penalty term

Why the penalty term $\int_\Omega \frac{(\sqrt{f} - \sqrt{Au})^2}{\sigma} \, dx$?

- By adding this term, we obtain a strictly convex model (2) for restoring blurry images with Rician noise.
How to prove the convexity of the proposed model (2)?

- Let us define a function g_0 as

 $$g_0(t) := -\log l_0(t) - 2\sqrt{t}.$$

- If $g_0(t)$ is strictly convex on $[0, +\infty)$, then the convexity of the first three terms in model (2) as a whole can be easily proved by letting $t = \frac{f(x)Au(x)}{\sigma^2}$.

- Since $\int_\Omega |\nabla u|$ is convex, the proposed model is strictly convex.
Convexity of the proposed model (2)

How to prove the strict convexity of function $g(t)$?

$g''_0(t) = -\frac{(l_0(t) + l_2(t))l_0(t) - 2l_1^2(t)}{2l_0^2(t)} + \frac{1}{2} t^{-\frac{3}{2}}.$

*Here, $I_n(t)$ is the modified Bessel functions of the first kind with order n.***

Based on the following lemma, we can prove that $g_0(t)$ is strictly convex.

Lemma 2 Let $h(t) = t^{\frac{3}{2}} \frac{(l_0(t) + l_2(t))l_0(t) - 2l_1^2(t)}{l_0^2(t)}$. Then $0 \leq h(t) < 1$ on $[0, +\infty)$.
Existence and uniqueness of a solution

Theorem 1 Let f be in $L^\infty(\Omega)$ with $\inf_{\Omega} f > 0$, then the model (2) has a unique solution u^* in $BV(\Omega)$ satisfying

$$0 < \frac{\sigma^2}{(2\sup_{\Omega} f + \sigma)^2} \inf_{\Omega} f \leq u^* \leq \sup_{\Omega} f.$$

Set $c_1 := \frac{\sigma^2}{(2\sup_{\Omega} f + \sigma)^2} \inf_{\Omega} f$, $c_2 := \sup_{\Omega} f$, and define two functions as follows,

$$E_0(u) := \frac{1}{2\sigma^2} \int_{\Omega} u^2 dx - \int_{\Omega} \log l_0(\frac{fu}{\sigma^2}) dx + \frac{1}{\sigma} \int_{\Omega} (\sqrt{u} - \sqrt{f})^2 dx,$$

$$E_1(u) := E_0(u) + \gamma \int_{\Omega} |Du| dx,$$

where $E_1(u)$ is the objective function in model (2).
Existence and uniqueness of a solution

- According to the integral forms of the modified Bessel functions of the first kind with integral orders n, we have

$$I_0(x) = \frac{1}{\pi} \int_0^\pi e^{x \cos \theta} d\theta \leq e^x, \quad \forall x \geq 0, \quad (4)$$

thus, for each fixed $x \in \Omega$, $-\log I_0 \left(\frac{f(x)t}{\sigma^2} \right) \geq -\frac{f(x)t}{\sigma^2}$ with $t \geq 0$.

- $E_1(u)$ in (3) is bounded below.

$$E_1(u) \geq E_0(u) \geq \frac{1}{2\sigma^2} \int_\Omega u^2 \, dx - \int_\Omega \log I_0 \left(\frac{fu}{\sigma^2} \right) \, dx$$

$$\geq \int_\Omega \left(\frac{1}{2\sigma^2} u^2 - \frac{fu}{\sigma^2} \right) \, dx$$

$$\geq - \frac{1}{2\sigma^2} \int_\Omega f^2 \, dx.$$
Existence and uniqueness of a solution

- For each fixed $x \in \Omega$, let the real function g on $\mathbb{R}^+ \cup \{0\}$ be defined as

 $$g(t) := \frac{1}{2\sigma^2} t^2 - \log I_0 \left(\frac{f(x)t}{\sigma^2} \right) + \frac{1}{\sigma} \left(\sqrt{t} - \sqrt{f(x)} \right)^2.$$

 $$g'(t) = \frac{1}{\sigma^2} t - \frac{f(x)}{\sigma^2} \frac{l_1 \left(\frac{f(x)t}{\sigma^2} \right)}{l_0 \left(\frac{f(x)t}{\sigma^2} \right)} + \frac{1}{\sigma} \left(1 - \sqrt{\frac{f(x)}{t}} \right).$$

- We can prove that $g(t)$ is increasing if $t \in (f(x), +\infty)$ and decreasing if $0 \leq t < \frac{\sigma^2}{(2f(x)+\sigma)^2} f(x)$. This implies that $g(\min(t, V)) \leq g(t)$ if $V \geq f(x)$.

- With $\int_{\Omega} |D \inf(u, c_2)| \leq \int_{\Omega} |Du|$ [Kornprobst,Deriche,Aubert 1999], we have

 $$E_1(\inf(u, c_2)) \leq E_1(u).$$

 Similarly, we can get $E_1(\sup(u, c_1)) \leq E_1(u)$.

- The unique solution u^* to the model (2) should be restricted in $[c_1, c_2]$.
Lemma 3 The function $l_0(x)$ is strictly log-convex for all $x > 0$.

- In order to prove that the function $l_0(x)$ is strictly log-convex in $(0, +\infty)$, it suffices to show that its logarithmic second-order derivative is positive in $(0, +\infty)$

$$
\left(\log l_0(x)\right)'' = \frac{\frac{1}{2}(l_0(x) + l_2(x))l_0(x) - l_1(x)^2}{l_0^2(x)}.
$$

- Using Cauchy-Schwarz inequality, we obtain

$$
\frac{1}{2}(l_0(x) + l_2(x))l_0(x) = \frac{1}{\pi} \int_0^\pi \cos^2 \theta e^x \cos \theta \, d\theta \cdot \frac{1}{\pi} \int_0^\pi e^x \cos \theta \, d\theta \\
\geq \left(\frac{1}{\pi} \int_0^\pi \cos \theta e^x \cos \theta \, d\theta\right)^2 = (l_1(x))^2.
$$

Since $\cos \theta e^{\frac{1}{2}x} \cos \theta$ and $e^{\frac{1}{2}x} \cos \theta$ are not linear dependent when θ changes, the strict inequality in above holds.
Lemma 4 Let $g(x)$ be a strictly convex and strictly increasing function in $(0, +\infty)$. Meanwhile, let $g(x)$ be differentiable. Assume that $0 < a < b$, $0 < c < d$, then we have:

$$g(ac) + g(bd) > g(ad) + g(bc).$$

Based on Theorem 1, Lemma 3 and Lemma 4, we can further establish the following comparison principle (minimum-maximum principle).
Proposition 3 Let f_1 and f_2 be in $L^\infty(\Omega)$ with $\inf_\Omega f_1 > 0$ and $\inf_\Omega f_2 > 0$. Suppose u_1^* (resp. u_2^*) is a solution of model (2) with $f = f_1$ (resp. $f = f_2$). Assume that $f_1 < f_2$, then we have $u_1^* \leq u_2^*$ a.e. in Ω.

- Note $u_1^* \wedge u_2^* := \inf(u_1^*, u_2^*)$, $u_1^* \vee u_2^* := \sup(u_1^*, u_2^*)$.
- $E_i^1(u)$ denotes $E_1(u)$ defined in (3) with $f = f_i$.
- Since u_1^* (resp. u_2^*) is a solution of model (2) with $f = f_1$ (resp. $f = f_2$), we can easily get

\[
E_1^1(u_1^* \wedge u_2^*) \geq E_1^1(u_1^*),
\]

\[
E_1^2(u_1^* \vee u_2^*) \geq E_1^2(u_2^*).
\]
Minimum-maximum Principle

- Adding the two inequalities together, and using the fact that
 \[\int_{\Omega} |D(u_1^* \wedge u_2^*)| + \int_{\Omega} |D(u_1^* \vee u_2^*)| \leq \int_{\Omega} |Du_1^*| + \int_{\Omega} |Du_2^*|, \]
 we obtain

 \[
 \int_{\Omega} \frac{1}{2\sigma^2} (u_1^* \wedge u_2^*)^2 - \log l_0 \left(\frac{f_1 (u_1^* \wedge u_2^*)}{\sigma^2} \right) \\
 + \frac{1}{\sigma} \left(\sqrt{u_1^* \wedge u_2^*} - \sqrt{f_1} \right)^2 dx + \int_{\Omega} \frac{1}{2\sigma^2} (u_1^* \vee u_2^*)^2 \\
 - \log l_0 \left(\frac{f_2 (u_1^* \vee u_2^*)}{\sigma^2} \right) + \frac{1}{\sigma} \left(\sqrt{u_1^* \vee u_2^*} - \sqrt{f_2} \right)^2 dx \\
 \geq \int_{\Omega} \frac{1}{2\sigma^2} (u_1^*)^2 - \log l_0 \left(\frac{f_1 u_1^*}{\sigma^2} \right) + \frac{1}{\sigma} \left(\sqrt{u_1^*} - \sqrt{f_1} \right)^2 dx \\
 + \int_{\Omega} \frac{1}{2\sigma^2} (u_2^*)^2 - \log l_0 \left(\frac{f_2 u_2^*}{\sigma^2} \right) + \frac{1}{\sigma} \left(\sqrt{u_2^*} - \sqrt{f_2} \right)^2 dx.
 \]
Minimum-maximum Principle

- As Ω can be written as $\Omega = \{u_1^* > u_2^*\} \cup \{u_1^* \leq u_2^*\}$, it is clear that
 \[
 \int_{\Omega} ((u_1^* \wedge u_2^*)^2 + (u_1^* \vee u_2^*)^2) \, dx = \int_{\Omega} ((u_1^*)^2 + (u_2^*)^2) \, dx.
 \]

- The inequality can be simplified as follows
 \[
 \int_{\{u_1^* > u_2^*\}} \left[\log \frac{l_0\left(\frac{f_1 u_1^*}{\sigma^2}\right) l_0\left(\frac{f_2 u_2^*}{\sigma^2}\right)}{l_0\left(\frac{f_1 u_2^*}{\sigma^2}\right) l_0\left(\frac{f_2 u_1^*}{\sigma^2}\right)} \right.
 + \frac{1}{\sigma} (\sqrt{u_1^*} - \sqrt{u_2^*})(\sqrt{f_1} - \sqrt{f_2}) \right] \, dx \geq 0.
 \]

- Since $l_0(t)$ is exponentially increasing function, we get $\log l_0$ is strictly increasing.
Based on Lemma 3 and Lemma 4, we get that if \(f_1 < f_2 \) and \(u_1^* > u_2^* \),

\[
\log l_0\left(\frac{f_1 u_1^*}{\sigma^2}\right) + \log l_0\left(\frac{f_2 u_2^*}{\sigma^2}\right) < \log l_0\left(\frac{f_1 u_2^*}{\sigma^2}\right) + \log l_0\left(\frac{f_2 u_1^*}{\sigma^2}\right),
\]

which is equivalent to

\[
\log \frac{l_0\left(\frac{f_1 u_1^*}{\sigma^2}\right)l_0\left(\frac{f_2 u_2^*}{\sigma^2}\right)}{l_0\left(\frac{f_1 u_2^*}{\sigma^2}\right)l_0\left(\frac{f_2 u_1^*}{\sigma^2}\right)} < 0.
\]

From the assumption \(f_1 < f_2 \), in this case we conclude that \(u_1^* > u_2^* \) has zero Lebesgue measure, i.e., \(u_1^* \leq u_2^* \) a.e. in \(\Omega \).
Existence and uniqueness of a solution

Theorem 2 Assume that $A \in \mathcal{L}(L^2(\Omega))$ is nonnegative, and it does not annihilate constant functions, i.e., $A1 \neq 0$. Let f be in $L^\infty(\Omega)$ with $\inf_{\Omega} f > 0$, then the model (2) has a solution u^*. Moreover, if A is injective, then the solution is unique.

- Define $E_A(u)$ as follows

$$E_A(u) = \frac{1}{2\sigma^2} \int_{\Omega} (Au)^2 dx - \int_{\Omega} \log l_0\left(\frac{A uf}{\sigma^2}\right) dx$$

$$+ \frac{1}{\sigma} \int_{\Omega} (\sqrt{Au} - \sqrt{f})^2 dx + \gamma \int_{\Omega} |Du| dx.$$

- Similar to the proof of Theorem 1, E_A is bounded from below. Thus, we choose a minimizing sequence $\{u_n\}$ for (2), and have that $\{\int_{\Omega} |Du_n|\}$ is bounded.
Existence and uniqueness of a solution

- Applying the Poincaré inequality, we get

\[\|u_n - m_\Omega(u_n)\|_2 \leq C \int_\Omega |D(u_n - m_\Omega(u_n))| = C \int_\Omega |Du_n|, \]

where \(m_\Omega(u_n) = \frac{1}{|\Omega|} \int_\Omega u_n \, dx \), \(|\Omega|\) denotes the measure of \(\Omega \), and \(C \) is a constant. As \(\Omega \) is bounded, \(\|u_n - m_\Omega(u_n)\|_2 \) is bounded for each \(n \).

- Since \(A \in \mathcal{L}(L^2(\Omega)) \) is continuous, \(\{A(u_n - m_\Omega(u_n))\} \) must be bounded in \(L^2(\Omega) \) and in \(L^1(\Omega) \).

- Based on the boundedness of \(E_A(u_n) \), \(\|\sqrt{A}u_n - \sqrt{f}\|^2 \) is bounded, which implies that \(Au_n \) is bounded in \(L^1(\Omega) \).

Meanwhile, we have:

\[|m_\Omega(u_n)| \cdot \|A1\|_1 = \|A(u_n - m_\Omega(u_n)) - Au_n\|_1 \leq \|A(u_n - m_\Omega(u_n))\|_1 + \|Au_n\|_1, \]

which turns out that \(m_\Omega(u_n) \) is uniformly bounded, because of \(A1 \neq 0 \).
Existence and uniqueness of a solution

- As we know that \(\{ u_n - m_\Omega(u_n) \} \) is bounded, the boundness of \(\{ u_n \} \) in \(L^2(\Omega) \) and thus in \(L^1(\Omega) \) is obvious.
- Therefore, there exists a subsequence \(\{ u_{n_k} \} \) which converges weakly in \(L^2(\Omega) \) to some \(u^* \in L^2(\Omega) \), and \(\{ Du_{n_k} \} \) weakly-* converges as a measure to \(Du^* \).
- Since the linear operator \(A \) is continuous, we have that \(\{ Au_{n_k} \} \) converges weakly to \(Au^* \) in \(L^2(\Omega) \) as well.
- Then according to the lower semi-continuity of the total variation and Fatou’s lemma, we obtain that \(u^* \) is a solution of the model (2).
- Furthermore, if \(A \) is injective, then its minimizer has to be unique since (2) is strictly convex.
Primal-Dual Algorithm for solving the model (2)

1: Fixed τ and β. Initialize $u^0 = \bar{u}^0 = w^0 = \bar{w}^0 = f$, $v^0 = \nabla(u^0)$, $p^0 = (0, \cdots, 0)^\top \in \mathbb{R}^{2n}$, and $q^0 = (0, \cdots, 0) \in \mathbb{R}^n$.

2: Calculate p^{k+1}, q^{k+1}, w^{k+1} and u^{k+1} from

\[
p^{k+1} = \arg\max_p \langle \bar{v}^k - \nabla \bar{u}^k, p \rangle - \frac{1}{2\beta} \| p - p^k \|^2
= p^k + \beta(\bar{v}^k - \nabla \bar{u}^k),
\]

\[
q^{k+1} = \arg\max_q \langle \bar{w}^k - A\bar{u}^k, q \rangle - \frac{1}{2\beta} \| q - q^k \|^2
= q^k + \beta(\bar{w}^k - A\bar{u}^k),
\]

\[
u^{k+1} = \arg\min_{0 \leq u \leq 255} \langle u, \gamma \text{div} p^{k+1} - A^\top q^{k+1} \rangle + \frac{1}{2\tau} \| u - u^k \|^2
= u^k + \tau(A^\top q^{k+1} - \text{div} p^{k+1}),
\]

\[
w^{k+1} = \arg\min_{0 \leq w \leq 255} G(w) + \langle w, q^{k+1} \rangle + \frac{1}{2\tau} \| w - w^k \|^2
\]

\[
\bar{u}^{k+1} = 2u^{k+1} - u^k,
\]

\[
\bar{v}^{k+1} = 2v^{k+1} - v^k,
\]

\[
\bar{w}^{k+1} = 2w^{k+1} - w^k.
\]

3: Stop; or set $k := k + 1$ and go to step 2.
Numerical Experiments - Denoising

Figure: Results and PSNR values of different methods when removing the Rician noise with $\sigma = 20$ in natural image "Cameraman". Row 1: the recovered images with different methods. Row 2: the residual images with different methods. (a) Zoomed original "Cameraman", (b) MAP model ($\gamma = 0.05$), (c) Getreuer’s model ($\lambda = 20$), (d) Our proposed model ($\gamma = 0.05$), (e) Noisy "Cameraman" with $\sigma = 20$, (f)-(h) are residual images of MAP model, Getreuer’s model and our model, respectively.
Denoising

Table: The comparisons of PSNR values, SSIM values and CPU-time in seconds by different methods for denoising case.

<table>
<thead>
<tr>
<th>Images</th>
<th>Methods</th>
<th>PSNR (σ = 20)</th>
<th>SSIM (σ = 20)</th>
<th>Time(s) (σ = 20)</th>
<th>PSNR (σ = 30)</th>
<th>SSIM (σ = 30)</th>
<th>Time(s) (σ = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Noisy</td>
<td>22.09</td>
<td>0.4069</td>
<td></td>
<td>18.46</td>
<td>0.2874</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>27.47</td>
<td>0.8153</td>
<td>106.85</td>
<td>24.25</td>
<td>0.7342</td>
<td>137.20</td>
</tr>
<tr>
<td>Camera-man</td>
<td>Getreuer's</td>
<td>27.28</td>
<td>0.7512</td>
<td>1.96</td>
<td>25.12</td>
<td>0.6567</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>27.82</td>
<td>0.8221</td>
<td>1.79</td>
<td>25.84</td>
<td>0.7637</td>
<td>2.23</td>
</tr>
<tr>
<td>Lumbar-Spine</td>
<td>Noisy</td>
<td>21.94</td>
<td>0.4113</td>
<td></td>
<td>18.20</td>
<td>0.2680</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>27.52</td>
<td>0.7485</td>
<td>71.87</td>
<td>24.26</td>
<td>0.6259</td>
<td>65.06</td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>27.57</td>
<td>0.6746</td>
<td>1.27</td>
<td>24.31</td>
<td>0.4886</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>28.18</td>
<td>0.7743</td>
<td>1.26</td>
<td>24.87</td>
<td>0.6444</td>
<td>1.14</td>
</tr>
<tr>
<td>Brain</td>
<td>Noisy</td>
<td>21.13</td>
<td>0.4666</td>
<td></td>
<td>17.60</td>
<td>0.3384</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>26.52</td>
<td>0.7191</td>
<td>72.42</td>
<td>22.70</td>
<td>0.6484</td>
<td>81.77</td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>28.84</td>
<td>0.8893</td>
<td>1.50</td>
<td>25.84</td>
<td>0.8194</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>29.21</td>
<td>0.8860</td>
<td>1.11</td>
<td>26.56</td>
<td>0.8067</td>
<td>1.30</td>
</tr>
<tr>
<td>Liver</td>
<td>Noisy</td>
<td>22.28</td>
<td>0.4395</td>
<td></td>
<td>18.82</td>
<td>0.3016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>28.62</td>
<td>0.7870</td>
<td>72.42</td>
<td>26.01</td>
<td>0.7129</td>
<td>87.97</td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>28.46</td>
<td>0.7726</td>
<td>2.23</td>
<td>26.29</td>
<td>0.6800</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>28.96</td>
<td>0.7986</td>
<td>2.38</td>
<td>26.78</td>
<td>0.7326</td>
<td>2.23</td>
</tr>
<tr>
<td>Average</td>
<td>Noisy</td>
<td>21.81</td>
<td>0.4311</td>
<td></td>
<td>18.27</td>
<td>0.2989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>27.53</td>
<td>0.7675</td>
<td>98.38</td>
<td>24.31</td>
<td>0.6804</td>
<td>104.03</td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>28.04</td>
<td>0.7719</td>
<td>1.74</td>
<td>25.39</td>
<td>0.6612</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>28.52</td>
<td>0.8203</td>
<td>1.64</td>
<td>26.01</td>
<td>0.7369</td>
<td>1.73</td>
</tr>
</tbody>
</table>
Deblurring and Denoising

Figure: Results and PSNR values of different methods when removing the Rician noise with $\sigma = 15$ and Motion blur in MR image ”Lumbar Spine”. Row 1: the recovered images with different methods. Row 2: the residual images with different methods. (a) Original ”Cameraman”, (b) MAP model ($\gamma = 0.05$), (c) Getreuer’s model ($\lambda = 20$), (d) Our proposed model ($\gamma = 0.04$), (e) Blurry ”Lumbar Spine” image with Rician noise $\sigma = 10$, (f)-(h) are residual images of MAP model, Getreuer’s model and our model, respectively.
Deblurring and Denoising

Table: The comparisons of PSNR values, SSIM values and CPU-time in seconds by different methods for deblurring with denoising.

<table>
<thead>
<tr>
<th>Images</th>
<th>Methods</th>
<th>Motion Blur</th>
<th></th>
<th></th>
<th></th>
<th>Gaussian Blur</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PSNR</td>
<td>SSIM</td>
<td>Time(s)</td>
<td>PSNR</td>
<td>SSIM</td>
<td>Time(s)</td>
<td></td>
</tr>
<tr>
<td>Camera-Man</td>
<td>Degraded</td>
<td>21.70</td>
<td>0.3680</td>
<td></td>
<td>22.26</td>
<td>0.3834</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>24.87</td>
<td>0.7811</td>
<td>81.49</td>
<td>25.35</td>
<td>0.7877</td>
<td>81.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>24.64</td>
<td>0.7697</td>
<td>2.87</td>
<td>25.29</td>
<td>0.7816</td>
<td>3.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>25.11</td>
<td>0.7797</td>
<td>2.24</td>
<td>25.74</td>
<td>0.7866</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>Lumbar-Spine</td>
<td>Degraded</td>
<td>23.15</td>
<td>0.4290</td>
<td></td>
<td>23.66</td>
<td>0.4543</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>26.73</td>
<td>0.7492</td>
<td>60.60</td>
<td>27.56</td>
<td>0.7810</td>
<td>60.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>25.76</td>
<td>0.6760</td>
<td>1.68</td>
<td>26.86</td>
<td>0.6953</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>27.30</td>
<td>0.7645</td>
<td>1.19</td>
<td>28.10</td>
<td>0.7816</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td>Degraded</td>
<td>22.72</td>
<td>0.4912</td>
<td></td>
<td>22.96</td>
<td>0.5039</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>27.61</td>
<td>0.7572</td>
<td>68.09</td>
<td>28.84</td>
<td>0.7728</td>
<td>69.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>27.91</td>
<td>0.8728</td>
<td>2.09</td>
<td>28.96</td>
<td>0.8915</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>28.49</td>
<td>0.8737</td>
<td>1.87</td>
<td>29.44</td>
<td>0.8905</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Degraded</td>
<td>23.41</td>
<td>0.4452</td>
<td></td>
<td>23.76</td>
<td>0.4639</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>28.02</td>
<td>0.7741</td>
<td>125.51</td>
<td>28.51</td>
<td>0.7826</td>
<td>126.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>27.87</td>
<td>0.7717</td>
<td>3.05</td>
<td>28.30</td>
<td>0.7798</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>28.19</td>
<td>0.7820</td>
<td>2.22</td>
<td>28.79</td>
<td>0.7935</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>Degraded</td>
<td>22.75</td>
<td>0.4334</td>
<td></td>
<td>23.16</td>
<td>0.4513</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>26.81</td>
<td>0.7654</td>
<td>83.92</td>
<td>27.57</td>
<td>0.7810</td>
<td>84.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getreuer's</td>
<td>26.55</td>
<td>0.7722</td>
<td>2.42</td>
<td>27.35</td>
<td>0.7871</td>
<td>2.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>27.27</td>
<td>0.8000</td>
<td>1.88</td>
<td>28.02</td>
<td>0.8130</td>
<td>2.08</td>
<td></td>
</tr>
</tbody>
</table>
Energy comparison

Table: The comparisons of the energy values $E(u_{\text{MAP}})$, $E(u_{\text{Getreuer's}})$, and $E(u_{\text{Ours}})$. Here, $E(u) := \frac{1}{2\sigma^2} \int_{\Omega} u^2 dx - \int_{\Omega} \log I_0\left(\frac{fu}{\sigma^2}\right) dx + \gamma \int_{\Omega} |Du| dx$, with the same γ. These three values are nearly the same.

<table>
<thead>
<tr>
<th>Method</th>
<th>$\sigma = 20$</th>
<th>$\sigma = 30$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>Getreuer’s</td>
</tr>
<tr>
<td>Cameraman</td>
<td>-404.15</td>
<td>-404.04</td>
</tr>
<tr>
<td>Skull</td>
<td>-84.34</td>
<td>-83.86</td>
</tr>
<tr>
<td>Liver</td>
<td>-150.70</td>
<td>-150.67</td>
</tr>
<tr>
<td>Brain</td>
<td>-218.03</td>
<td>-220.11</td>
</tr>
<tr>
<td>Average</td>
<td>-214.30</td>
<td>-214.67</td>
</tr>
</tbody>
</table>

As one of our aim is to obtain a good approximation for the global solution of the original non-convex model (presented in the caption of the above table)

- we plugged the solutions obtained by the MAP model, Getreuer’s convex model and our model into the original functional to get the corresponding energy values.
- as these three energy values are quite close, Getreuer’s and our approximation approaches are quite reasonable.
- in the denoising case, our method is comparable to the MAP and Getreuer’s methods.
Comments on numerical results

Our convexified model is very competitive to other recently proposed methods.

- Higher PSNR values and better visual results.
- Less computational time.
- Unique minimizer, independent of initialization.

It seems the effort of convexification is justified, so we continue to another non-convex problem...
Other non-convex models

Many other non-convex models in image processing.

- Generalization?
- Possible....
- Not so easy
Multiplicative Gamma noise with blur

Degradation model

\[f = (Au)\eta. \]

- \(\eta \): multiplicative noise.
- We assume \(\eta \) follows Gamma distribution, i.e.,
 \[
 p_{\eta}(x; \theta, K) = \frac{1}{\theta^K \Gamma(K)} x^{K-1} e^{-\frac{x}{\theta}}.
 \]
- Mean and variance of \(\eta \) are \(K\theta \) and \(K\theta^2 \).
- We assume mean of \(\eta \) equals 1.
TV-Multiplicative model

MAP analysis leads to:

\[
\min_u \int_\Omega \left(\log(Au) + \frac{f}{Au} \right) \, dx + \lambda \int_\Omega |Du|,
\]

- Known as the AA model.
- The edge-preserving TV term, \(\int_\Omega |Du| \), the constant \(\lambda > 0 \)
- Non-convex.
New approach: Convexified TV-Multiplicative model

We introduce a quadratic penalty term:

$$
\min_u \int_\Omega \left(\log(Au) + \frac{f}{Au} \right) dx + \alpha \int_\Omega \left(\sqrt{\frac{Au}{f}} - 1 \right)^2 dx + \lambda \int_\Omega |Du|.
$$

(14)

- $\alpha > 0$ is a penalty parameter.
- If $\alpha \geq \frac{2\sqrt{6}}{9}$, the model (14) is convex!
The quadratic penalty term

More reasons to add the penalty term $\int_{\Omega} \left(\sqrt{\frac{Au}{f}} - 1 \right)^2 dx$:

- Set $Y = \frac{1}{\sqrt{\eta}}$, where η follows Gamma distribution with mean 1.
- It can be shown that (K is the shape parameter in Gamma distribution)
 \[\lim_{K \to +\infty} E((Y - 1)^2) = 0. \]
- For large K, Y can be well approximated by Gaussian distribution. (We will introduce the concept of the Kullback-Leibler (KL) divergence later to reveal the relationship.)
- The MAP estimation leads to $\int_{\Omega} (v - f)^2 dx$ as data fitting term in additive Gaussian noise removal.
Proposition Suppose that the random variable η follows Gamma distribution with mean 1. Set $Y = \frac{1}{\sqrt{\eta}}$, with mean μ_K and variance σ_k^2. Then

$$
\lim_{K \to +\infty} D_{KL}(Y \| \mathcal{N}(\mu_K, \sigma_k^2)) = 0,
$$

where $\mathcal{N}(\mu_K, \sigma_k^2)$ is the Gaussian distribution.

- It can be shown that $D_{KL}(Y \| \mathcal{N}(\mu_K, \sigma_k^2)) = O\left(\frac{1}{K}\right)$.
Indeed, we can prove that:

(i) \(\int_{0}^{+\infty} p_Y(y) \log p_Y(y) \, dy = \log 2 - \log(\sqrt{K} \Gamma(K)) + \frac{2K+1}{2} \psi(K) - K \), where
\(\psi(K) := \frac{d \log \Gamma(K)}{dK} \) is the digamma function;

(ii) \(\int_{0}^{+\infty} p_Y(y) \log p_{\mathcal{N}(\mu_K, \sigma^2_K)}(y) \, dy = -\frac{1}{2} \log(2\pi e \sigma^2_K) \), where
\(p_{\mathcal{N}(\mu_K, \sigma^2_K)}(y) \) denotes the PDF of the Gaussian distribution
\(\mathcal{N}(\mu_K, \sigma^2_K) \);

(iii) \(D_{KL}(Y \| \mathcal{N}(\mu_K, \sigma^2_K)) = O\left(\frac{1}{K}\right) \).
Approximate by Gaussian distribution (cont.)

Indeed, by calculation, we can get,

\[\sigma_K^2 = \mathbb{E}(Y^2) - \mathbb{E}^2(Y) \]
\[= \frac{K \Gamma(K - 1)}{\Gamma(K)} - \frac{K \Gamma^2(K - \frac{1}{2})}{\Gamma^2(K)}. \]

and

\[D_{\text{KL}}(Y \| \mathcal{N}(\mu_K, \sigma_K^2)) \]
\[= \log 2 - \log(\sqrt{K} \Gamma(K)) + \frac{2K + 1}{2} \psi(K) - K + \frac{1}{2} \log(2\pi e \sigma_K^2) \]
\[= \log 2 + \frac{1}{2} \log K \sigma_K^2 + \mathcal{O}(\frac{1}{K}) \]
\[= \log 2 + \frac{1}{2} \log \left(\frac{1}{4} + \mathcal{O}(\frac{1}{K})\right) + \mathcal{O}(\frac{1}{K}) \]
\[= \mathcal{O}(\frac{1}{K}). \]
Furthermore, if we set $Z := \frac{Y - \mu_K}{\sigma_K}$, then

$$\lim_{K \to \infty} D_{KL}(Z|\mathcal{N}(0, 1)) = 0.$$

▶ A simple change of variable shows

$$D_{KL}(Z|\mathcal{N}(0, 1)) = D_{KL}(Y|\mathcal{N}(\mu_K, \sigma^2_K)).$$

▶ Z tends to the standard Gaussian distribution $\mathcal{N}(0, 1)$.
Figure: The comparisons of the PDFs of Y and $\mathcal{N}(\mu, \sigma^2)$ with different K. (a) $K = 6$, (b) $K = 10$.
Numerical Experiments - Denoising

Figure: Results of different methods when removing the multiplicative noise with $K = 10$. (a) Noisy "Cameraman", (b) AA method, (c) RLO method, (d) our method.
Cauchy noise with blur

Degradation model

\[f = (Au) + \nu. \]

- \(\nu \): Cauchy noise.
- A random variable \(V \) follows the Cauchy distribution if it has density

\[g(\nu) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + (\nu - \delta)^2}, \]

where \(\gamma > 0 \) is the scale parameter and \(\delta \) is localization parameter.
Cauchy noise

Figure: Alpha-stable noise in 1D: notice that the y-axis has different scale (scale between 30 and 120 on (a) and (b) and −100 and 400 on (c)). (a) 1D noise free signal; (b) signal degraded by an additive Gaussian noise; (c) signal degraded by an additive Cauchy noise. Cauchy noise is more impulsive than the Gaussian noise.
TV-Cauchy model

MAP analysis leads to:

\[
\inf_{u \in BV(\Omega)} TV(u) + \frac{\lambda}{2} \int_{\Omega} \log\left(\gamma^2 + (Au - f)^2\right) dx
\]

- \(\gamma > 0\) is the scale parameter and \(A\) is the blurring operator.
- Edge-preserving.
- Non-convex.
Image corrupted by Cauchy noise

Figure: Comparison of different noisy images. (a) Original image u_0; (b) u corrupted by an additive Gaussian noise; (c) u corrupted by an additive Cauchy noise; (d) u corrupted by an impulse noise; (e)–(h) zoom of the top left corner of the images (a)–(d), respectively. Cauchy noise and impulse noise are more impulsive than the Gaussian noise.
New approach: Convexified TV-Cauchy model

We introduce a quadratic penalty term:

$$
\inf_{u \in BV(\Omega)} TV(u) + \frac{\lambda}{2} \left(\int_{\Omega} \log \left(\gamma^2 + (Au - f)^2 \right) dx + \mu \|Au - u_0\|_2^2 \right).
$$

- Cauchy noise has impulsive character.
- u_0 is the image obtained by applying the median filter to the noisy image.
- The median filter is used instead of the myriad filter for simplicity and computational time.
Numerical Experiments - Denoising

Figure: Recovered images (with PSNR(dB)) of different approaches for removing Cauchy noise from the noisy image "Peppers". (a) Wavelet shrinkage; (b) SURE-LET; (c) BM3D; (d) our model.
Denoising

Table: PSNR values for noisy images and recovered images given by different methods ($\xi = 0.02$). In the last line of the table, we compute the average of the values.

<table>
<thead>
<tr>
<th></th>
<th>Noisy</th>
<th>ROF</th>
<th>MD</th>
<th>MR</th>
<th>L^1-TV</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peppers</td>
<td>19.15</td>
<td>25.03</td>
<td>29.64</td>
<td>29.85</td>
<td>30.34</td>
<td>30.94</td>
</tr>
<tr>
<td>Parrot</td>
<td>19.13</td>
<td>23.88</td>
<td>27.05</td>
<td>27.13</td>
<td>28.02</td>
<td>28.98</td>
</tr>
<tr>
<td>Cameraman</td>
<td>19.07</td>
<td>24.00</td>
<td>26.14</td>
<td>26.57</td>
<td>27.21</td>
<td>27.91</td>
</tr>
<tr>
<td>Lena</td>
<td>19.06</td>
<td>24.58</td>
<td>28.94</td>
<td>28.98</td>
<td>29.84</td>
<td>30.36</td>
</tr>
<tr>
<td>Boat</td>
<td>19.03</td>
<td>24.21</td>
<td>27.27</td>
<td>27.49</td>
<td>28.70</td>
<td>29.20</td>
</tr>
<tr>
<td>Average</td>
<td>19.09</td>
<td>23.89</td>
<td>26.75</td>
<td>26.97</td>
<td>28.08</td>
<td>28.74</td>
</tr>
</tbody>
</table>
Deblurring and Denoising

Figure: The zoomed-in regions of the recovered images from blurry images with Cauchy noise. First row: details of original images; second row: details of restored images by L^1-TV approach; third row: details of restored images by our approach.
Table: PSNR values for noisy images and recovered images given by different methods ($\xi = 0.02$). In the last line of the table, we compute the average of the values.

<table>
<thead>
<tr>
<th></th>
<th>Noisy</th>
<th>ROF</th>
<th>MD</th>
<th>MR</th>
<th>L^1-TV</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peppers</td>
<td>18.31</td>
<td>24.21</td>
<td>25.19</td>
<td>25.01</td>
<td>26.70</td>
<td>27.46</td>
</tr>
<tr>
<td>Parrot</td>
<td>18.23</td>
<td>24.06</td>
<td>24.48</td>
<td>24.57</td>
<td>25.75</td>
<td>26.79</td>
</tr>
<tr>
<td>Cameraman</td>
<td>18.29</td>
<td>23.98</td>
<td>24.43</td>
<td>24.39</td>
<td>25.49</td>
<td>26.27</td>
</tr>
<tr>
<td>Lena</td>
<td>18.64</td>
<td>25.74</td>
<td>26.70</td>
<td>26.72</td>
<td>27.26</td>
<td>28.14</td>
</tr>
<tr>
<td>Baboon</td>
<td>17.42</td>
<td>20.84</td>
<td>21.54</td>
<td>21.49</td>
<td>21.36</td>
<td>21.81</td>
</tr>
<tr>
<td>Goldhill</td>
<td>18.47</td>
<td>24.84</td>
<td>25.88</td>
<td>25.85</td>
<td>26.17</td>
<td>26.76</td>
</tr>
<tr>
<td>Boat</td>
<td>18.48</td>
<td>24.36</td>
<td>25.42</td>
<td>25.43</td>
<td>26.18</td>
<td>26.69</td>
</tr>
<tr>
<td>Average</td>
<td>18.28</td>
<td>24.00</td>
<td>24.81</td>
<td>24.78</td>
<td>25.56</td>
<td>26.31</td>
</tr>
</tbody>
</table>
Remarks

- We introduced three convex models based on Total Variation.
- Under mild conditions, our models have unique solutions.
- Because of convexity, fast algorithms can be employed.
- Numerical experiments suggest good performance of the models.
- Generalization?
Outline

1. Variational Models for Rician Noise Removal
2. Two-stage Segmentation
3. Dictionary and Weighthed Nuclear Norm
Mumford-Shah model (1989)

Mumford-Shah model is an energy minimization problem for image segmentation:

$$\min_{g,\Gamma} \frac{\lambda}{2} \int_{\Omega} (f - g)^2 dx + \frac{\mu}{2} \int_{\Omega \setminus \Gamma} |\nabla g|^2 dx + \text{Length}(\Gamma).$$

- f observed image, g a piecewise smooth approximation of f,
- Γ boundary of segmented region.

- λ and μ are positive.

- Non-convex, very difficult to solve!
Chan-Vese model
When $\mu \to +\infty$, it reduces to:

$$
\min_{\Gamma, c_1, c_2} \lambda \int_{\Omega_1} (f - c_1)^2 dx + \frac{\lambda}{2} \int_{\Omega_2} (f - c_2)^2 dx + \text{Length}(\Gamma),
$$

where Ω is separated into Ω_1, Ω_2 by Γ.

- Level-set method can be applied.
- Rather complex!
- Still non-convex.
- Multi-phases?
Our approach

We propose a novel two-stage segmentation approach.

▶ First stage, solve for a convexified variant of the Mumford-Shah model.
▶ Second stage, use data clustering method to threshold the solved solution.
Stage One

- \text{Length}(\Gamma) \leftrightarrow \int_{\Omega} |\nabla u|; \text{ and equal when } u \text{ is binary.}
- \text{phases of } g \text{ can be obtained from } u \text{ by thresholding.}
Stage One

- \(\text{Length}(\Gamma) \leftrightarrow \int_{\Omega} |\nabla u| \); and equal when \(u \) is binary.
- phases of \(g \) can be obtained from \(u \) by thresholding.

Observation: (especially when \(g \) is nearly binary)

- jump set of \(g \) \(\approx \) jump set of \(u \).
- \(\int_{\Omega} |\nabla g| \approx \int_{\Omega} |\nabla u| \leftrightarrow \text{Length}(\Gamma) \).
Stage One: Unique Minimizer

Our convex variant of the Mumford-Shah model (Hintermüller H^1-norm for image restoration) is:

$$E(g) = \frac{\lambda}{2} \int_\Omega (f - Ag)^2 \, dx + \frac{\mu}{2} \int_\Omega |\nabla g|^2 \, dx + \int_\Omega |\nabla g| \, dx$$ \hspace{1cm} (15)

Its discrete version:

$$\frac{\lambda}{2} \| f - Ag \|^2_2 + \frac{\mu}{2} \| \nabla g \|^2_2 + \| \nabla g \|_1$$

Theorem

Let Ω be a bounded connected open subset of \mathbb{R}^2 with a Lipschitz boundary. Let $\text{Ker}(A) \cap \text{Ker}(\nabla) = \{0\}$ and $f \in L^2(\Omega)$, where A is a bounded linear operator from $L^2(\Omega)$ to itself. Then $E(g)$ has a unique minimizer $g \in W^{1,2}(\Omega)$.
Stage Two

With a minimizer \(g \) from the first stage, we obtain a segmentation by thresholding \(g \).

- We use the K-means method to obtain proper thresholds.
- Fast multiphase segmentation.
- Number of phases \(K \) and thresholds \(\rho \) are determined after \(g \) is calculated. Little computation to change \(K \) and \(\rho \). No need to recalculate \(u \)!
- Users can try different \(K \) and \(\rho \).
Extensions to Other Noise Models

First stage: solve for

\[
\min_g \left\{ \lambda \int_\Omega (Ag - f \log Ag) dx + \frac{\mu}{2} \int_\Omega |\nabla g|^2 dx + \int_\Omega |\nabla g| dx \right\}
\]

(16)

- data fitting term good for Poisson noise from MAP analysis
- also suitable for Gamma noise (Steidl and Teuber (10)).
- objective functional is convex (solved by Chambolle-Pock)
- admits unique solution if \(\text{Ker}(\mathcal{A}) \cap \text{Ker}(\nabla) = \{0\} \).

Second stage: threshold the solution to get the phases.
Example: Poisson noise with motion blur

Original image	Noisy & blurred	Yuan et al. (10)
Dong et al. (10) | Sawatzky et al. (13) | Our method
Example: Gamma noise

Original image

Noisy image

Yuan et al. (10)

Li et al. (10)

Our method
Three-stage Model

We propose a SLaT (Smoothing, Lifting and Thresholding) method for multiphase segmentation of color images corrupted by different types of degradations: noise, information loss, and blur.

- Stage One: Smoothing
- Stage Two: Lifting
- Stage Three: Thresholding
Three-stage Model

Let the given degraded image be in \mathcal{V}_1.

- **Smoothing:** The convex variational model ((15) or (16)) for grayscale images is applied in parallel to each channel of \mathcal{V}_1. This yields a restored smooth image.

- **Color Dimension Lifting:** We transform the smoothed color image to a secondary color space \mathcal{V}_2 that provides us with complementary information. Then we combine these images as a new vector-valued image composed of all the channels from color spaces \mathcal{V}_1 and \mathcal{V}_2.

- **Thresholding:** According to the desired number of phases K, we apply a multichannel thresholding to the combined \mathcal{V}_1-\mathcal{V}_2 image to obtain a segmented image.
Smoothing stage

Let \(f = (f_1, \ldots, f_d) \) be a given color image with channels
\(f_i : \Omega \rightarrow \mathbb{R}, \ i = 1, \ldots, d \). Denote \(\Omega_0^i \) the set where \(f_i \) is known.

We consider the minimizing the functional \(E \) below

\[
E(g_i) = \frac{\lambda}{2} \int_{\Omega} \omega_i \cdot \Phi(f_i, g_i) dx + \frac{\mu}{2} \int_{\Omega} |\nabla g_i|^2 dx + \int_{\Omega} |\nabla g_i| dx, \quad i = 1, \ldots, d,
\]

where \(\omega_i(\cdot) \) is the characteristic function of \(\Omega_0^i \), i.e.

\[
\omega_i(x) = \begin{cases}
1, & x \in \Omega_0^i, \\
0, & x \in \Omega \setminus \Omega_0^i.
\end{cases}
\]

For \(\Phi \) in (17) we consider the following options:

1. \(\Phi(f, g) = (f - Ag)^2 \), the usual choice;
2. \(\Phi(f, g) = Ag - f \log(Ag) \) if data are corrupted by Poisson noise.
Uniqueness and existence

The Theorem below proves the existence and the uniqueness of the minimizer of (17) where we define the linear operator (ω_iA) by

$$(\omega_iA) : u(x) \in L^2(\Omega) \mapsto \omega_i(x)(Au)(x) \in L^2(\Omega).$$

Theorem

Let Ω be a bounded connected open subset of \mathbb{R}^2 with a Lipschitz boundary. Let $A : L^2(\Omega) \to L^2(\Omega)$ be bounded and linear. For $i \in \{1, \ldots, d\}$, assume that $f_i \in L^2(\Omega)$ and that $\text{Ker}(\omega_iA) \cap \text{Ker}(\nabla) = \{0\}$ where Ker stands for null-space. Then

$$E(g_i) = \frac{\lambda}{2} \int_{\Omega} \omega_i \cdot \Phi(f_i, g_i) dx + \frac{\mu}{2} \int_{\Omega} |\nabla g_i|^2 dx + \int_{\Omega} |\nabla g_i| dx,$$

with either $\Phi(f_i, g_i) = (f_i - Ag_i)^2$ or $\Phi(f_i, g_i) = Ag_i - f_i \log(Ag_i)$ has a unique minimizer $\bar{g}_i \in W^{1,2}(\Omega)$.
Segmentation of Real-world Color Images

Figure: Four-phase sunflower segmentation (size: 375×500). (A): Given Gaussian noisy image with mean 0 and variance 0.1; (B): Given Gaussian noisy image with 60% information loss; (C): Given blurry image with Gaussian noise;
Observations for Two/Three-stage segmentation

- Convex segmentation model with unique solution. Can be solved easily and fast.
- No need to solve the model again when thresholds or number of phases changes.
- Easily extendable to e.g. blurry images and non-Gaussian noise.
- Link image segmentation and image restoration.
- Efficient algorithms of color image segmentation.
Outline

1. Variational Models for Rician Noise Removal
2. Two-stage Segmentation
3. Dictionary and Weighted Nuclear Norm
Deblurring under impulse noise

Degraded model

\[g = \mathbb{N}_{imp}(Hu), \]

where \(g \) is corrupted image, \(H \) is the blur kernel.

- one-phase model:

\[
\min_u J(u) + \lambda F(Hu - g),
\]

where \(J \) is the regularization term, \(\lambda \) is a positive parameter, \(F \) is the data fidelity-term.

- two-phase methods:

\[
\min_u J(u) + \lambda \sum_s F(\Lambda_s(Hu - g)_s),
\]

where

\[\Lambda_s = \begin{cases}
0, & \text{if } s \in \mathcal{N}, \\
1, & \text{otherwise},
\end{cases} \]

with \(\mathcal{N} \) the noise candidates set.
Variational model

[Ma, Yu, and Z, SIIMS 2013]
In order to restore image from degraded model

\[g = \mathbb{N}_{imp}(Hu). \]

we consider the following model:

\[
\min_{\alpha_s, u, D} \sum_{s \in \mathcal{P}} \mu_s \|\alpha_s\|_0 + \sum_{s \in \mathcal{P}} \|D\alpha_s - R_s u\|_2^2 + \eta \|\nabla u\|_1 + \lambda \|\Lambda(Hu - g)\|_1,
\]

(19)

where \(\|\nabla u\|_1\) denotes the discrete version of the isotropic total variation norm defined as:

\[
\|\nabla u\|_1 = \sum_s |(\nabla u)_s|, \quad |(\nabla u)_s| = \sqrt{|(\nabla u)_s^1|^2 + |(\nabla u)_s^2|^2}.
\]
Experimental results

PSNR (dB) values for various methods for the test images corrupted by Gaussian blur and random-valued noise with noise levels $r = 20\%, 40\%, 60\%$ respectively.

<table>
<thead>
<tr>
<th>Image/r</th>
<th>FTVd</th>
<th>Dong</th>
<th>Cai1</th>
<th>Cai2</th>
<th>Yan</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar./20%</td>
<td>25.29</td>
<td>25.18</td>
<td>28.37</td>
<td>29.34</td>
<td>27.33</td>
<td>31.30</td>
</tr>
<tr>
<td>Bar./40%</td>
<td>24.17</td>
<td>24.19</td>
<td>25.99</td>
<td>26.68</td>
<td>26.21</td>
<td>28.82</td>
</tr>
<tr>
<td>Bar./60%</td>
<td>22.13</td>
<td>21.27</td>
<td>24.02</td>
<td>24.07</td>
<td>25.02</td>
<td>25.28</td>
</tr>
<tr>
<td>Cam./20%</td>
<td>29.56</td>
<td>28.19</td>
<td>33.25</td>
<td>37.22</td>
<td>33.32</td>
<td>39.24</td>
</tr>
<tr>
<td>Cam./40%</td>
<td>24.92</td>
<td>25.43</td>
<td>29.44</td>
<td>31.74</td>
<td>30.64</td>
<td>35.21</td>
</tr>
<tr>
<td>Cam./60%</td>
<td>19.92</td>
<td>21.00</td>
<td>23.33</td>
<td>23.92</td>
<td>24.55</td>
<td>28.59</td>
</tr>
<tr>
<td>Lena/20%</td>
<td>35.08</td>
<td>32.99</td>
<td>37.60</td>
<td>40.68</td>
<td>36.08</td>
<td>42.42</td>
</tr>
<tr>
<td>Lena/40%</td>
<td>31.26</td>
<td>30.85</td>
<td>35.74</td>
<td>36.67</td>
<td>35.20</td>
<td>39.53</td>
</tr>
<tr>
<td>Lena/60%</td>
<td>25.77</td>
<td>23.47</td>
<td>30.33</td>
<td>30.59</td>
<td>30.25</td>
<td>34.41</td>
</tr>
</tbody>
</table>
Numerical Experiments - Denoising

Figure: Recovered images (with PSNR(dB)) of different methods on image Cameraman corrupted by Gaussian blur and random-valued noise with noise level 60%.
SSMS deblurring

1. Applying Wiener filter to remove the blur effect;
2. SSMS denoising to remove the color noise.

The underlying clear image patch x can be estimated from the noisy patch y via

$$\tilde{f} = \sum_{l \in \Lambda} \langle f, \phi_{k_0,l} \rangle \phi_{k_0,l},$$

where

$$\Lambda = \{ l : |\langle f, \phi_{k_0,l} \rangle| > T \},$$

and the threshold value T depends on the noise variance.

Drawback: Wiener filter doesn’t work well when the noise level is high.
Deblurring via total variation based SSMS

Model:

\[
\min_{u, D, \alpha_s} \frac{\lambda}{2} \| Au - g \|_2^2 + \frac{\beta}{2} \sum_{s \in \mathcal{P}} \| R_s u - D \alpha_s \|_2^2 \\
+ \sum_{s \in \mathcal{P}} \mu_s \| \alpha_s \|_1 + \| \nabla u \|_1,
\]

(20)

For each patch \(R_s u \), a best orthogonal basis \(\Phi_{k_0} \) of size \(N \times N \) is selected by SSMS.

We employ the alternating minimization method to solve the model.
The proposed algorithm is compared to five related existing image deblurring methods:

1. TV based method
2. Fourier wavelet regularized deconvolution (ForWaRD) method
3. Structured Sparse Model Selection (SSMS) deblurring
4. Framelet based image deblurring approach
5. Non-local TV based method
Experimental results

Comparison of the PSNR (dB) of the recovered results by different methods, with respect to the noise level $\sigma = 2$.

<table>
<thead>
<tr>
<th></th>
<th>Kernel</th>
<th>TV</th>
<th>ForWaRD</th>
<th>SSMS</th>
<th>Framelet</th>
<th>NLTV</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>box</td>
<td></td>
<td>27.97</td>
<td>27.69</td>
<td>27.75</td>
<td>28.90</td>
<td>28.86</td>
<td>29.39</td>
</tr>
<tr>
<td>gaussian</td>
<td></td>
<td>27.91</td>
<td>27.80</td>
<td>27.73</td>
<td>28.62</td>
<td>28.64</td>
<td>28.80</td>
</tr>
<tr>
<td>motion</td>
<td></td>
<td>28.24</td>
<td>28.34</td>
<td>28.03</td>
<td>29.53</td>
<td>29.57</td>
<td>30.33</td>
</tr>
<tr>
<td>Lena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>box</td>
<td></td>
<td>28.79</td>
<td>29.72</td>
<td>29.82</td>
<td>30.65</td>
<td>29.64</td>
<td>31.18</td>
</tr>
<tr>
<td>gaussian</td>
<td></td>
<td>30.01</td>
<td>30.45</td>
<td>30.68</td>
<td>31.76</td>
<td>30.73</td>
<td>32.28</td>
</tr>
<tr>
<td>motion</td>
<td></td>
<td>29.56</td>
<td>30.60</td>
<td>30.55</td>
<td>31.82</td>
<td>30.97</td>
<td>32.72</td>
</tr>
<tr>
<td>Cam.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>box</td>
<td></td>
<td>25.44</td>
<td>25.66</td>
<td>25.69</td>
<td>26.43</td>
<td>26.29</td>
<td>27.05</td>
</tr>
<tr>
<td>gaussian</td>
<td></td>
<td>24.83</td>
<td>25.06</td>
<td>25.04</td>
<td>25.27</td>
<td>24.92</td>
<td>25.62</td>
</tr>
<tr>
<td>motion</td>
<td></td>
<td>26.62</td>
<td>26.89</td>
<td>26.74</td>
<td>28.11</td>
<td>28.38</td>
<td>29.16</td>
</tr>
</tbody>
</table>
Experimental results

Comparison of the PSNR (dB) of the recovered results by different methods, with respect to the noise level $\sigma = 10$.

<table>
<thead>
<tr>
<th></th>
<th>Kernel</th>
<th>TV</th>
<th>ForWaRD</th>
<th>SSMS</th>
<th>Framelet</th>
<th>NLTV</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boat.</td>
<td>box</td>
<td>25.06</td>
<td>25.15</td>
<td>25.26</td>
<td>25.72</td>
<td>25.71</td>
<td>25.90</td>
</tr>
<tr>
<td></td>
<td>motion</td>
<td>24.67</td>
<td>24.94</td>
<td>25.07</td>
<td>25.29</td>
<td>25.50</td>
<td>25.94</td>
</tr>
<tr>
<td>Lena</td>
<td>box</td>
<td>26.47</td>
<td>27.46</td>
<td>27.71</td>
<td>27.82</td>
<td>26.92</td>
<td>28.45</td>
</tr>
<tr>
<td></td>
<td>gaussian</td>
<td>27.82</td>
<td>28.96</td>
<td>29.05</td>
<td>29.17</td>
<td>28.43</td>
<td>29.92</td>
</tr>
<tr>
<td></td>
<td>motion</td>
<td>26.18</td>
<td>27.21</td>
<td>27.62</td>
<td>27.53</td>
<td>27.10</td>
<td>28.64</td>
</tr>
<tr>
<td>Cam.</td>
<td>box</td>
<td>23.09</td>
<td>22.35</td>
<td>22.34</td>
<td>23.50</td>
<td>23.38</td>
<td>24.02</td>
</tr>
<tr>
<td></td>
<td>gaussian</td>
<td>23.55</td>
<td>23.43</td>
<td>23.41</td>
<td>24.04</td>
<td>24.11</td>
<td>24.37</td>
</tr>
<tr>
<td></td>
<td>motion</td>
<td>22.89</td>
<td>22.26</td>
<td>22.27</td>
<td>23.43</td>
<td>23.52</td>
<td>24.28</td>
</tr>
</tbody>
</table>
Low rank

Figure: Grouping blocks

BM3D:
Grouping by matching; Collaborative filtering.

Low rank:
Grouping by matching; Low rank minimization.
Low rank minimization

\[
\min_X \| Y - X \|_F^2, \quad s.t. \quad \text{rank}(X) \leq r
\]

Drawback: nonconvex

Convex relaxation: nuclear norm minimization (NNM:

\[
\min_X \frac{1}{2} \| Y - X \|_F^2 + \lambda \| X \|_*
\]

with solution \(X^* = US_\lambda(\Sigma)V^T \).

\(Y = U\Sigma V^T \) is the singular value decomposition (SVD) of matrix \(Y \), where

\[
\Sigma = \begin{pmatrix}
\text{diag}(\sigma_1, \sigma_2, \cdots, \sigma_n) \\
0
\end{pmatrix},
\]

and the singular value shrinkage operator is defined as

\[
S_\lambda(\Sigma) = \max(0, \Sigma - \lambda),
\]

which actually is the proximal operator of the nuclear norm function (Cai, Candès and Shen).
WNNM

NNM: using a same value to penalize every singular value
However, the larger singular value is more important and should shrink less in many cases.

The weighted nuclear norm minimization (**WNMM**) problem:

\[
\min_X \frac{1}{2} \| Y - X \|_F^2 + \| X \|_{\bar{w},*},
\]

(22)

where

\[
\| X \|_{\bar{w},*} = \sum_{i=1}^{n} w_i \sigma_i(X),
\]

(23)

with \(\sigma_1(X) \geq \sigma_2(X) \geq \cdots \geq \sigma_n(X) \geq 0 \), the weights vector
\(\bar{w} = [w_1, w_2, \cdots, w_n] \), and \(w_i \geq 0 \).
Existent mathematical properties of WNNM

Proposition: Assume $Y \in R^{m \times n}$, the SVD of Y is $Y = U\Sigma V^T$, and $0 \leq w_1 \leq w_2 \leq \cdots \leq w_n$, the global optimal solution of the WNNM problem in (22) is

$$X^* = UDV^T, \quad (24)$$

where $D = \begin{pmatrix} \text{diag} (d_1, d_2, \cdots, d_n) \\ 0 \end{pmatrix}$ is a diagonal non-negative matrix and $d_i = \max(\sigma_i - w_i, 0)$, $i = 1, \cdots, n$.

Proposition: Assume $Y \in R^{m \times n}$, and the SVD of Y is $Y = U\Sigma V^T$, the solution of the WNNM problem in (22) can be expressed as $X^* = UDV^T$, where $D = \begin{pmatrix} \text{diag} (d_1, d_2, \cdots, d_n) \\ 0 \end{pmatrix}$ is a diagonal non-negative matrix and (d_1, d_2, \cdots, d_n) is the solution of the following convex optimization problem:

$$\min_{d_1, \cdots, d_n} \sum_{i=1}^{n} \frac{1}{2} (d_i - \sigma_i)^2 + w_id_i, \; \text{s.t.} \; d_1 \geq d_2 \geq \cdots \geq d_n \geq 0. \quad (25)$$
It is extremely important and urgent if one can find explicit solution for Problem (22) which uses the weights in an arbitrary order. This is one of our main contributions.

Theorem 3: Assume that \((a_1, \cdots, a_n) \in \mathbb{R}^n\) and \(n \in \mathbb{N}\). Then the following minimization problem

\[
\min_{d_1 \geq \cdots \geq d_n \geq 0} \sum_{i=1}^{n} (d_i - a_i)^2,
\]

(26)

has a unique global optimal solution in the closed form. Moreover, for any \(k \in \mathbb{N}\), we assume that \(M_k = (d_1, \cdots, d_k)\) is the solution to the \(k\)-th problem of (26) (that is (26) with \(n = k\)), in particular, we denote by \(d_k^* = d_k\) the last component of \(M_k\) and \(d_0^* = +\infty\).
Existential mathematical properties of WNNM

If

\[s_0 := \sup \{ s \in \mathbb{N} \mid d_{s-1}^* \geq \frac{\sum_{k=s}^n a_k}{n-s+1}, \quad s = 1, \ldots, n \} \], \quad (27) \]

then the solution \(M_n = (d_1, \ldots, d_n) \) to (26) satisfies

\[(d_1, \ldots, d_{s_0-1}) = M_{s_0-1} \quad \text{and} \quad d_{s_0} = \cdots = d_n = \max \left(\frac{\sum_{k=s_0}^n a_k}{n-s_0+1}, 0 \right). \quad (28)\]

Furthermore, the global solution of (22) is given in (24) with

\[D = \begin{pmatrix} \operatorname{diag} (d_1, d_2, \ldots, d_n) \\ 0 \end{pmatrix}. \]
The uniqueness is clear since the objective function in (26) is strictly convex. We should employ the method of induction to prove the existence result of (26).

Firstly, for $n = 1$, (26) has a unique solution $d_1 = \max\{a_1, 0\}$.

Assume that for any $k \leq n - 1$, the k-th problem of (26) has a unique solution $M_k = (d_1, \ldots, d_k)$. Then to solve the n-th problem (26), we compare d_{n-1}^* and a_n as follows:

- if $d_{n-1}^* \geq a_n$, then $d_n = \max\{a_n, 0\}$ and (26) is solvable. Moreover, the solution M_n satisfies (28) with $s_0 = n$
- if $d_{n-1}^* < a_n$, we take $d = d_{n-1} = d_n$ and we have to solve the following reduced $(n - 1)$-th problem

$$\min_{d_1 \geq \ldots \geq d_{n-2} \geq d \geq 0} \left(\sum_{i=1}^{n-2} (d_i - a_i)^2 + 2(d - \frac{a_{n-1} + a_n}{2})^2 \right). \quad (29)$$
Mathematical properties

For the latter case, we have to solve (29). To do so, we compare d_{n-2}^* and $\frac{a_{n-1}+a_n}{2}$ in the similar way as above:

- if $d_{n-2}^* \geq \frac{a_{n-1}+a_n}{2}$, then $d_{n-1} = d_n = d = \max\{\frac{a_{n-1}+a_n}{2}, 0\}$ and (26) is solvable. Moreover, the solution M_n satisfies (28) with $s_0 = n - 1$;
- if $d_{n-2}^* < \frac{a_{n-1}+a_n}{2}$, we take $d = d_{n-2} = d_{n-1} = d_n$ and we have to solve the following reduced $(n-2)$-th problem

$$
\min_{d_1 \geq \cdots \geq d_{n-3} \geq d \geq 0} \left(\sum_{i=1}^{n-3} (d_i - a_i)^2 + 3(d - \frac{a_{n-2} + a_{n-1} + a_n}{3})^2 \right).
$$

(30)
We shall repeat the above arguments and stop at the following s_0-th problem

$$
\min_{d_1 \geq \cdots \geq d_{s_0-1} \geq d \geq 0} \left(\sum_{i=1}^{s_0-1} (d_i - a_i)^2 + (n - s_0 + 1)(d - \frac{\sum_{k=s_0}^{n} a_k}{n-s_0+1})^2 \right).
$$

(31)

where $d = d_{s_0} = \cdots = d_n$ and s_0 is defined in (27). Since $d_{s_0-1}^* \geq \frac{\sum_{k=s_0}^{n} a_k}{n-s_0+1}$, we have

$d_{s_0} = \cdots = d_n = d = \max(\frac{\sum_{k=s_0}^{n} a_k}{n-s_0+1}, 0)$. Then (26) is solvable and the solution M_n satisfies (28). Thus, it completes the proof of the theorem.
Deblurring based on WNNM

The proposed model is

$$\min_u \sum_{j \in P} \|R_j u\|_{\tilde{w},*} + \|\nabla u\|_1 + \frac{\lambda}{2} \|A u - g\|_F^2,$$ \hspace{1cm} (32)

where P denotes the set of indices where small image patches exist. The operator R_j firstly collects the similar patches of the reference patch located at j, and then stacks those patches into a matrix which should be low rank.

Introduce an auxiliary variable v:

$$\min_{u,v} \sum_{j \in P} \|R_j v\|_{\tilde{w},*} + \|\nabla u\|_1 + \frac{\lambda}{2} \|A u - g\|_F^2, \text{ s.t. } v = u. \hspace{1cm} (33)$$

Then using the split Bregman method, we get

$$\begin{cases} (u^{k+1}, v^{k+1}) = \min_{u,v} \sum_{j \in P} \|R_j v\|_{\tilde{w},*} + \|\nabla u\|_1 + \frac{\lambda}{2} \|A u - g\|_F^2 + \frac{\alpha}{2} \|u - v - b^k\|_F^2, \\
 b^{k+1} = b^k + (v^{k+1} - u^{k+1}), \end{cases}$$
Minimization for each patches group

For each similar patches group $R_j \nu$, we have:

$$\| R_j \nu \|_{\tilde{w}^*, \alpha} + \frac{\alpha}{2} \left\| R_j \nu - \left(R_j u^{k+1} - R_j b^k \right) \right\|_F^2.$$

Then, using the WNNMG to solve this problem, we have

$$R_j \nu^{k+1} = U \begin{pmatrix} \text{diag} (d_1, d_2, \cdots, d_n) \\ 0 \end{pmatrix} V^T,$$

where

$$\left(R_j u^{k+1} - R_j b^k \right) = U \begin{pmatrix} \text{diag} (\sigma_{ub,1}, \sigma_{ub,2}, \cdots, \sigma_{ub,n}) \\ 0 \end{pmatrix} V^T,$$

and $d_i = \max \left(0, \left(\sigma_{ub,i} - \frac{w_i^2}{\sigma_{ub,i}} \right) \right)$, $w_i = \frac{c_1 \sqrt{N_{sp}}}{\sigma_i (R_j \nu^{k+1}) + \varepsilon}$, for $i = 1, 2, \cdots, n$.
Experimental results

Comparison of the PSNR (dB) of the recovered results by different methods, with respect to the noise level $\sigma = 5$.

<table>
<thead>
<tr>
<th>Image</th>
<th>Kernel</th>
<th>ROF</th>
<th>ForWaRD</th>
<th>Framelet</th>
<th>NLTV</th>
<th>BM3DDEB</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar.</td>
<td>box</td>
<td>22.73</td>
<td>23.57</td>
<td>23.79</td>
<td>23.12</td>
<td>24.03</td>
<td>24.05</td>
</tr>
<tr>
<td></td>
<td>gaussian</td>
<td>23.11</td>
<td>23.87</td>
<td>24.02</td>
<td>23.32</td>
<td>24.09</td>
<td>24.14</td>
</tr>
<tr>
<td></td>
<td>motion</td>
<td>23.13</td>
<td>23.74</td>
<td>24.22</td>
<td>23.72</td>
<td>25.02</td>
<td>25.15</td>
</tr>
<tr>
<td>Cam.</td>
<td>box</td>
<td>24.00</td>
<td>23.83</td>
<td>24.67</td>
<td>24.73</td>
<td>24.92</td>
<td>25.84</td>
</tr>
<tr>
<td></td>
<td>gaussian</td>
<td>24.17</td>
<td>24.28</td>
<td>24.62</td>
<td>24.64</td>
<td>24.79</td>
<td>25.27</td>
</tr>
<tr>
<td></td>
<td>motion</td>
<td>24.28</td>
<td>24.15</td>
<td>25.15</td>
<td>25.32</td>
<td>25.67</td>
<td>27.02</td>
</tr>
<tr>
<td>Lena</td>
<td>box</td>
<td>27.43</td>
<td>28.52</td>
<td>28.90</td>
<td>28.23</td>
<td>29.38</td>
<td>29.96</td>
</tr>
<tr>
<td></td>
<td>gaussian</td>
<td>28.70</td>
<td>29.93</td>
<td>30.46</td>
<td>29.64</td>
<td>30.85</td>
<td>31.34</td>
</tr>
<tr>
<td></td>
<td>motion</td>
<td>27.48</td>
<td>28.55</td>
<td>29.43</td>
<td>28.78</td>
<td>30.27</td>
<td>31.10</td>
</tr>
</tbody>
</table>
Figure: Recovered results (with PSNR(dB) of different methods on image Cameraman corrupted by 9×9 uniform blur and Gaussian noise with standard deviation $\sigma = 5$.
Remarks

- Good recovered results (blur + Gaussian noise ∖ Impulse noise);
- Extent to non-Gaussian noises such as Poisson noise and multiplicative noise;
- Extent to other image applications such as image classification.
Summary

There are many non-convex image recover and segmentation models, we consider 3 ways to solve those models

1. Add an extra convex term
2. Relax the functional
3. Compute the analytic solution

Messages:

1. Extra convex term, good to overcome non-convexity
2. Relaxation technique, good for segmentation
3. Sparsity models lead to good image recovery results
References

Contributors

- Xiaohao Cai (University of Cambridge)
- Raymond Chan (The Chinese University of Hong Kong)
- Liyuan Chen (University of Texas at Dallas)
- Yiqiu Dong (Technical University of Denmark)
- Jian Yu (Beijing Jiaotong University)
- Lionel Moisan (Universit Paris Descartes)
- Zhi Li (Michigan Stage University)
- Liyan Ma (Institute of Microelectronics, CAS)
- Mila Nikolova (École Normale Supérieure de Cachan)
- Federica Sciacchitano (Technical University of Denmark)
- Li Xu (Chinese Academy of Science)
- Hongfei Yang (The Chinese University of Hong Kong)
THANK YOU!