Estimation of High-Dimensional Densities

Joan Bruna, Stéphane Mallat,

École Normale Supérieure
High-Dimensional Density Estimation

• Estimation $\tilde{p}(x)$ of a probability density $p(x)$ for $x \in \mathbb{R}^d$ given n realizations $\{x_i\}_{i \leq n}$ of a random vector X.

• $p(x)$ is the space $C^1(\mathbb{R}^d)$ of Lipschitz functions if then at best $\mathbb{E}(\|p - \tilde{p}\|_2^2) = O(n^{-\frac{2}{d+2}})$

• If $d > 10$ then n must be huge: impossible.

Problem:

Find regularity properties which can break the curse of dimensionality.
Markov Hypothesis

- Markov hypothesis: local conditional dependence

\[
p\left(x(u) / x(u'), u' \neq u\right) = p\left(x(u) / x(u') , u' \in N_u\right)
\]

- Hammersely-Clifford theorem proves that

\[
\log p(x) = \beta_0 + \sum_{k=1}^{K} \phi_k(x(u), u \in C_k)
\]

separation over small cliques of neighbour variables of conditionally independent components.

- Problem: Markov hypothesis often not valid
Gibbs Distributions

Approximation of $p(x)$ conditioned on K moments $\mathbb{E}_p(\phi_k(x))$ by \tilde{p} which maximizes the entropy $H_{\tilde{p}} = -\int \tilde{p}(x) \log \tilde{p}(x) \, dx$

Theorem [Canonical Gibbs] If $\tilde{p}(x)$ satisfies

$$\forall k \leq K, \quad \mathbb{E}_{\tilde{p}}(\phi_k(x)) = \int_{\mathbb{R}^N} \phi_m(x) \tilde{p}(x) \, dx = \mathbb{E}_p(\phi_k(x))$$

and maximizes $H_{\tilde{p}} = -\int \tilde{p}(x) \log \tilde{p}(x) \, dx$ then

$$\log \tilde{p}(x) = \beta_0 + \sum_{k=1}^{K} \beta_k \phi_k(x) \quad \text{(separation)}$$

Problems:

- How to choose the ϕ_k to approximate p?
- Can the $\phi_k(x)$ be quadratic if \tilde{p} is Gaussian?
Key Ideas

We want \(\log p(x) \approx \log \tilde{p}(x) = \beta_0 + \sum_{k=1}^{K} \beta_k \phi_k(x) : \text{separation} \)

\(\Rightarrow \) the regularity of the \(\phi_k \) is defined by the regularity of \(p \)

- Regularity of \(p(x) \) defined by \textit{diffeomorphism groups} acting on \(x \)

- Separations are \textit{scale separations} (not Markov) \(\Rightarrow \) \textit{wavelets}

- \(H_{\tilde{p}} \geq H_p \) and if \(H_{\tilde{p}} = H_p \) then \(\tilde{p} = p \)
 - The \(\phi_k \) should minimize the maximum entropy \(H_{\tilde{p}} \)
 - Obtained with \textit{sparsity} and intersections of \(l^1 \) balls

- Approximate the \textit{canonical} \(\tilde{p} \) by a \textit{microcanonical} distribution

- Implemented by a \textit{deep convolutional network}
Lipschitz Regularity on a Group

- Group G of operators acting on x with a metric.

- An $f(x)$ is in $\mathbf{C}^1(G)$ of Lipschitz functions for the action of G

$$\forall (g, x) \in G \times \mathbb{R}^d, \quad |f(x) - f(g.x)| \leq C \text{dist}(g, Id)$$

The usual Lipschitz space is $\mathbf{C}^1(\mathbb{R}^d)$: $g.x = x - g$ for $g \in \mathbb{R}^d$.

$$\text{dist}(d, Id) = \|g\|$$

- Lipschitz continuity to spatial diffeomorphisms: deformations

Images $x(u) \in \mathbf{L}^2(\mathbb{R}^2)$ \quad $g.x(u) = x(g(u))$ for $g \in \text{Diff}(\mathbb{R}^2)$

Weak topology: $\text{dist}(g, Id) = \|\nabla g\|_\infty$

$$\Rightarrow \quad |f(x) - f(g.x)| \leq C \|\nabla g\|_\infty \quad \Rightarrow \text{translation invariance}$$
- Amplitude deformation of \(x(u) \in L^2(\mathbb{R}^2) \) with \(g \in \text{Diff}(\mathbb{R}) \)

\[
g.x(u) = g(x(u))
\]
• The action of $\text{Diff}(\mathbb{R}^3)$ on x deforms the 3D measure

$$\bar{x}(u_1, u_2, u_3) = \delta(u_3 - x(u_1, u_2))$$
Amplitude-Space Deformations

- The action of $\text{Diff}(\mathbb{R}^3)$ on x deforms the 3D measure
 \[
 \bar{x}(u_1, u_2, u_3) = \delta(u_3 - x(u_1, u_2))
 \]

- Image classification functions are typically in $C^1(\text{Diff}(\mathbb{R}^3))$
Lipschitz Approximations

- We want to approximate \(\log p \) in \(C^1(\text{Diff}(\mathbb{R}^3)) \) with

\[
\log \tilde{p}(x) = \sum_{k=0}^{K-1} \beta_k \phi_k(x) = \langle \Phi(x), \beta \rangle
\]

\(\log \tilde{p} \in C^1(\text{Diff}) \) if \(\Phi \) is in \(C^1(\text{Diff}(\mathbb{R}^3))^K \) with

\[
\| \Phi(x) - \Phi(g.x) \| \leq C \| \nabla g \|_{\infty}
\]

How can we build such \(\Phi \)?
Marginal Distributions

Cramer-Wold theorem

• A stationary density p of X is characterised by the $1D$ marginals of $X \star \psi_\alpha(u)$ for all $\psi_\alpha \in \mathbb{R}^d$

\Rightarrow choose a ”large” family of $\{\psi_\alpha\}_\alpha$; Mumford, Zhu estimate the distribution of $X \star \psi_\alpha(u)$ with a histogram \hat{p}: maximum entropy conditioned to these histogram values

\textit{A bit too optimistic}...

spatial deformations

• To approximate $\log p$ is in $C^1(\text{Diff}(\mathbb{R}^2))$ we need that

$\forall \alpha \; , \; \|u \cdot \nabla \psi_\alpha(u)\|_1 \leq C$

dilated filters: \textit{scale separation}
Scale separation with Wavelets

- Wavelet filter $\psi(u)$: \[\begin{array}{cc} \text{real parts} & \text{imaginary parts} \\ \end{array} \]

rotated and dilated: $\psi_{2^j, \theta}(u) = 2^{-j} \psi(2^{-j} r\theta u)$

$x \ast \psi_{2^j, \theta}(u) = \int x(v) \psi_{2^j, \theta}(u - v) \, dv$

- Wavelet transform: $W x = \left(d^{-1} \sum_u x(u) \ x \ast \psi_{2^j, \theta}(u) \right)_{j, \theta}$

Preserves norm: $\|W x\|^2 = \|x\|^2$.

\[x(u) \]

\[\downarrow \]

\[\text{average} \]

\[\text{higher frequencies} \]
CHAPTER 2. TRANSLATION SCATTERING AND CONVOLUTIONAL NETWORKS

\[J = 3 \]
\[C = 6 \]
\[Q = 1 \]

\[J = 5 \]
\[C = 8 \]
\[Q = 1 \]

\[J = 3 \]
\[C = 4 \]
\[Q = 2 \]

\[\phi_J \]

\[\{ \psi_{\theta,j} \} \]

\[A(\omega) \]

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each set of parameters, we show, from left to right, the Gaussian window \(\phi_J \), the Morlet wavelets \(\psi_{\theta,j} \), and the associated Littlewood Paley sum \(A(\omega) \). When the number of scales \(J \) increases, so does the width of the low pass wavelet \(\phi_J \). When the number of orientations \(C \) increases or when the number of scales per octave \(Q \) decreases, the Morlet wavelets become more elongated in the direction perpendicular to the orientation, and hence have an increased angular sensitivity.
Chapter 2. Translation Scattering and Convolutional Networks

\(J = 3 \)
\(C = 6 \)
\(Q = 1 \)

\(J = 5 \)
\(C = 8 \)
\(Q = 1 \)

\(J = 3 \)
\(C = 4 \)
\(Q = 2 \)

\(\phi_J \)

\(\{ \psi_{\theta, j} \} \)

\(A(\omega) \)

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each set of parameters, we show, from left to right, the Gaussian window \(\phi_J \), the Morlet wavelets \(\psi_{\theta, j} \), and the associated Littlewood Paley sum \(A(\omega) \).

When the number of scales \(J \) increases, so does the width of the low-pass wavelet \(\phi_J \). When the number of orientations \(C \) increases or when the number of scales per octave \(Q \) decreases, the Morlet wavelets become more elongated in the direction perpendicular to their orientation, and hence have an increased angular sensitivity.
Wavelet transform

\[x \ast \psi_{\lambda} \text{ (real part)} : \lambda = (2^j, \theta) \]
Wavelet Transform Marginals

Marginal distribution of wavelet coeffs $X \ast \psi_{j,\theta}(u)$

 histograms of real part
Laplacian: sparse
Gaussian

log of histograms

uniform phase distributions
histograms over \mathbb{C}
• If $X \star \psi_\lambda(u)$ has a Laplacian density $\alpha e^{-\beta |y|}$ then

$$\|X \star \psi_\lambda\|_1 = \sum_u |X \star \psi_\lambda(u)|$$

is a sufficient statistics of maximum entropy models.

• If $X \star \psi_\lambda(u)$ has a Gaussian density $\alpha e^{-\beta |y|^2}$ then

$$\|X \star \psi_\lambda\|_2^2 = \sum_u |X \star \psi_\lambda(u)|^2$$

is a sufficient statistics of maximum entropy models.
- Wavelet model

\[\Phi(x) = \left\{ \sum_u x(u), \sum_u |x \ast \psi_{j, \theta}(u)|, \sum_u |x \ast \psi_{j, \theta}(u)|^2 \right\}_{(j, \theta)} \]

- Separates scales \(j \) and angles \(\theta \)
- Markovian along \(u \) over cliques of size \(\sim 2^j \) for each \(j, \theta \)

- **Canonical** max entropy distribution conditioned by \(\mathbb{E}_p(\Phi(x)) \)

\[\log \tilde{p}(x) = \langle \Phi(x), \beta \rangle + \beta_0 \].

Problem: computing \(\beta \) is too expensive

\(\Rightarrow \) *microcanonical* approximation of \(\tilde{p} \)
Ergodic Microcanonical Model

Only \(n = 1 \) realisation \(x_1 \) of \(X \) is known

Microcanonical set: \(\Omega_{x_1} = \{ x : \| \Phi x - \Phi x_1 \| \leq \epsilon \} \)

Microcanonical model \(\bar{\rho} \): maximum entropy supported in \(\Omega_{x_1} \)

\(\Rightarrow \) uniform in \(\Omega_{x_1} \) if bounded set.

\[\Omega_{x_1} \]

\[\Phi(x_1) \]

Ergodicity: \(\text{Prob} \left(| \Phi X - \mathbb{E}(\Phi X) | < \epsilon \right) \xrightarrow{d \to \infty} 1 \Rightarrow \Phi x_1 \approx \mathbb{E}(\Phi X) \)

Gibbs conjecture: conditioning on \(\Phi x_1 \) or on \(\mathbb{E}(\Phi X) \) converges to the same Gibbs measure when \(d \) goes to \(\infty \).
Uniform Distribution on Balls

- Sphere in \mathbb{R}^d
 \[\Phi x = d^{-1} \| x \|_2^2 = d^{-1} \sum_{k=1}^{d} |x(k)|^2 \]

- Simplex in \mathbb{R}^d
 \[\Phi x = d^{-1} \| x \|_1 = d^{-1} \sum_{k=1}^{d} |x(k)| = \mu \]

Borel 1914
Diaconis, Freedman 1987

\[\overline{X}(1), ..., \overline{X}(d) \xrightarrow{d \to \infty} \text{i.i.d Gaussian} \sim e^{-u^2/2\sigma^2} \]

Diaconis, Freedman 1987

\[\overline{X}(1), ..., \overline{X}(d) \xrightarrow{d \to \infty} \text{i.i.d Exponential} \sim e^{-\lambda|u|} \]
• Intersection of a Sphere and a Simplex in \mathbb{R}^d

$$\Phi x = (\|x\|_1, \|x\|_2^2)$$

Ω_x

Chatterjee 2015

• If d goes to ∞ then $\bar{X}(1), ..., \bar{X}(d)$ converges to:

- a canonical Gibbs: $e^{-\alpha|x| - \beta|x|^2}$ if $r = \|x\|_2 / \|x\|_1 < 2$

- Gaussian if $r = \sqrt{\pi/2}$

- Laplacian if $r = \sqrt{2}$

a singular sparse distribution if $r > 2$
Theorem \((H. \text{ Georgii})\)

If \(\Phi x = \sum_u U_x(u)\) where \(U_x\) has a bounded range for \(u \in \mathbb{Z}^d\)

If the macro canonical distribution exists and converges to a unique Gibbs measure when \(d\) goes to \(\infty\)

then the microcanonical model converges to the same measure for a weak topology.

Proof: large deviation principle
Microcanonical Sampling

Joan Bruna

- Sample max entropy \overline{X} in Ω_{x_1}: $\|\Phi \overline{X} - \Phi x_1\| \leq \epsilon$

Algorithm:
Initialized with X_0 Gaussian white noise
Iteratively reduce $\|\Phi X_n - \Phi x_1\|^2$ with gradient descent

- Proof of convergence to a stationary process X_∞
 The algorithm defines a transport of measure.

Math problems:
- No proof on maximum entropy
- Entropy lower bounds depend upon the Jacobian of Φ...
Ising at Critical Temperature

\[x(u) \in \{0, 1\} \quad p(x) = Z^{-1} \exp \left(\frac{1}{T} \sum_{(u,u') \in C_I} x(u) x(u') \right) \]

\[\Phi(x) = \left\{ d^{-1} \sum_u x(u) , \| x \ast \psi_\lambda \|_1 , \| x \ast \psi_\lambda \|_2^{2} \right\}_\lambda \]

\[T = T_{\text{critic}} + \epsilon \]

Realization \(x_1 \) of \(X \)

Microcanonical \(X_\infty \)
\[\Phi(x) = \left\{ d^{-1} \sum_{u} x(u), \| x \ast \psi_{\lambda} \|_1, \| x \ast \psi_{\lambda} \|_2^2 \right\}_\lambda \]

Realization \(x_1 \) of \(X \) \hspace{1cm} \text{Microcanonical} \ X_\infty
Wavelet Model

\[|x \ast \psi_{j,\theta}(u)| = w(u, j, \theta) \]

\[\Phi(x) = \left\{ \sum_u x(u), \sum_u |x \ast \psi_{j,\theta}(u)|, \sum_u |x \ast \psi_{j,\theta}(u)|^2 \right\}_{(j,\theta)} \]

"Conditional independence" may be violated along \(u, \theta, j \).
Higher Order Wavelet Coefficients

Loss of information:

\[\| x \ast \psi_{\lambda_1} \|_1 = \sum_u |x \ast \psi_{\lambda_1}(u)| \]

eliminates all variations of \(|x \ast \psi_{\lambda_1}(u)| \) along \(u \)

Lipschitz to diffeomorphisms:

recover them as wavelet coefficients of \(|x \ast \psi_{\lambda_1}(u)| \)

\[|W_2| |x \ast \psi_{\lambda_1}| = \left(\frac{\sum_u |x \ast \psi_{\lambda_1}(u)|}{\|x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2}(u)|} \right)_{\lambda_2} \]
Wavelet Scattering Network

\[\Phi = |W_{\log d/2}| \cdots |W_2| |W_1| \]

\[\Phi x = \left\{ \sum_{u} x(u) \right\} \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \cdots \ast \psi_{\lambda_m} \|_1 \right\}_{\lambda_k} \]
Scattering Properties

\[\Phi x = \left(\sum_u x(u) \right) \begin{pmatrix} \|x \ast \psi_{\lambda_1}\|_1 \\ \|x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2}\|_1 \\ \|x \ast \psi_{\lambda_2} \ast \psi_{\lambda_2} \ast \psi_{\lambda_3}\|_1 \\ \vdots \end{pmatrix} = \ldots |W_3| |W_2| |W_1| x \]

\[\|W_k x\| = \|x\| \Rightarrow \|W_k x - W_k x'\| \leq \|x - x'\| \]

Lemma: If \(g \in \text{Diff}(\mathbb{R}^2) \) then

\[\|[W_k, g]\| = \|W_k g - gW_k\| \leq C \|\nabla g\|_{\infty} \]

Theorem: For appropriate wavelets, a scattering is

- contractive \(\|\Phi x - \Phi y\| \leq \|x - y\| \) : in \(C^1(L^2(\mathbb{R}^2)) \)

- preserves norms \(\|\Phi x\| = \|x\| \)

- Lipschitz on diffeomorphisms \(\|\Phi x - \Phi(g.x)\| \leq C \|\nabla g\|_{\infty} \)
Energy conservation

\[\| x \| = \| \Phi x \| \Rightarrow \| x \ast \psi_{\lambda_1} \|_2^2 = \| \Phi (x \ast \psi_{\lambda_1}) \|_2^2 \]

\[\| x \ast \psi_{\lambda_1} \|_2^2 = \sum_{m=2}^{\infty} \sum_{\lambda_2, \ldots, \lambda_m} \| x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \ldots \ast \psi_{\lambda_m} \|_1^2 \]

All \(L^2 \) norms are derived from \(L^1 \) norms.

Non-negligible \(L^1 \) norms appear at order 1 and 2:

\[\Phi(x) = \left\{ \sum_u x(u), \| x \ast \psi_{\lambda_1} \|_1, \| | x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \|_1 \right\}_{\lambda_1, \lambda_2} \]

If \(x \in \mathbb{R}^d \) then \(\Phi x \in \mathbb{R}^{O(\log^2 d)} \)
Texture Reconstructions

Texture of d pixels

Ising-critical
Turbulence 2D

Gaussian process model with d second order moments

Reconstructions from $\|X \ast \psi_{\lambda_1}\|_1$ and $\|\|X \ast \psi_{\lambda_1} \ast \psi_{\lambda_2}\|_1$

$O(\log^2 d)$ scattering coefficients
Microcanonical Reconstructions

\[\Phi(x) = \left\{ \sum_{u} x(u), \| x \ast \psi_{\lambda_1} \|_1, \| x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \|_1 \right\}_{\lambda_1, \lambda_2} \]

Realization \(x_1 \) of \(X \)

Microcanonical \(X_\infty \)

order 1

order 2

Must further reduce entropy
- Scattering model of too high entropy

\[|x \ast \psi_{\theta, j}(u)| = w(u, \theta, j) \]

- not sparse at intermediate scales \(2^j\) but not Gaussian

- joint dependance in \((u, \theta)\) \(\Rightarrow\) wavelet transforms in \((u, \theta)\)

- dependence on amplitude values?
3D Scattering for Amplitude

\[\bar{x}(u_1, u_2, u_3) = \delta(u_3 - x(u_1, u_2)) \]

We want \(\Phi \) in \(\mathbb{C}^1(\text{Diff}(\mathbb{R}^3)) \)

3D wavelets: \(\psi_{\lambda}(u_1, u_2, u_3) = 2^{-2j} \psi(2^{-j} r_\theta(u_1, u_2)) \) \(2^{-\ell} \psi(2^{-\ell} u_3) \)

Joint dependance on amplitude and spatial geometry

Wavelet coefficients are much more sparse at intermediate scales

\[\Phi \bar{x} = \left(\begin{array}{c} \sum_u \bar{x}(u) \\ \| \bar{x} \ast \psi_{\lambda_1} \|_1 \\ \| x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \|_1 \\ \vdots \end{array} \right) \]

\(\lambda_1, \lambda_2, \ldots \)
3D Scattering Models

Preliminary results

Realization x_1 of X 2D Scat on x 3D Scat on \bar{x}
Conclusions

• Regularity in high dimension as regularity to action of diffeomorphisms on different groups

• Long range dependence: variable separation through scales

• Entropy reduction with sparsity: L_1 geometry