A metric on the space of genus-zero surfaces

or

The harmony of the spheres
The harmonic maps of the 2-spheres

Joint with Patrice Koehl
The Centrality of Surface Comparison

1. Every object we see is a surface (almost).
2. Cell phone software can already digitize surfaces. Scanning soon to be everywhere.
3. Can we use this digitized data?
4. Potential applications:
 - Diagnose disease or fracture: Radiologists
 - Drug design: Pharmaceutical costs
 - Recognize bones and fossils: Landmarks
 - Compare teeth: Dentists?
The space of surfaces

Need definitions: Shape, distance, alignment. Appropriate definition will vary.
Uniformization

Curvature 1

Curvature 0

Curvature -1

All maps are conformal
GOAL 1:
A metric on Genus-Zero surfaces

1. $d(C_1, C_2) = 0$ \hspace{1cm} C_1 is isometric to C_2 (isometry)

2. $d(C_1, C_2) = d(C_2, C_2)$ (symmetry)

3. $d(C_1, C_3) \leq d(C_1, C_3) + d(C_1, C_3)$ (triangle inequality)

Why a metric?

Each property plays an important role in applications
Isometry: $d(C_1, C_2) = 0 \iff C_1$ is isometric to C_2

Allows for identifying different views of the same object.

We probably want to consider these to be the same object. If so, our distance measure should not change if one shape is moved by a Euclidean Isometry.

It also should not depend on a parametrization.
Symmetry: \[d(C_1, C_2) = d(C_2, C_2) \]

The distance between two objects does not depend on the order in which we find them.

If I own the square, and you own the circle, we can agree on the distance between them.
Triangle inequality: \[d(C_1, C_3) \leq d(C_1, C_2) + d(C_2, C_3) \]

Measures should be stable under small errors.

\[d(C_1, C_3) - d(C_2, C_3) \leq d(C_1, C_2) \]

If \(C_1 \) and \(C_2 \) are close, so \(d(C_1, C_2) \) is small, then

the distance of \(C_1 \) and \(C_2 \) to a third shape \(C_3 \) is about the same.

\[d(\square, \circ) - d(\square, \circ) \leq d(\square, \square) \]

This means that noise, or a small error, does not affect distance measurement very much.
Comparing Surfaces

Problem: How to compare two surfaces?

1. What is the distance between a pair of surfaces?

2. What is a good alignment between two surfaces?

When \(d(F_1, F_2) \) is small, find a "good" correspondence

\[
f : F_1 \rightarrow F_2
\]
Landmarks?

Landmark free: Alignment determined completely by geometry.

Landmarks: Key feature points are (somehow) chosen and used to align.

Problem: Choosing landmarks can be hard and expensive and is error prone. Focus first on *landmark free methods*.
Why Intrinsic geometry?

1. Captures similarity between flexible surfaces. e.g. Proteins

2. Captures similarity between (seemingly) rigid surfaces. metatarsal bones:
Searching among diffeomorphisms

How can we search the vast space of diffeomorphisms for a map closest to an isometry?

Choosing the best $f:F_1 \rightarrow F_2$ from this infinite-dimensional space is hard.

Idea: Restrict our search to conformal maps

$$C:F_1 \rightarrow F_2$$

C is chosen from the much smaller space of conformal maps. This is still a big space, but not too big to work with.
Conformal maps exist in genus 0

We can’t always find an isometry between F_1 and F_2. But for genus zero surfaces F_1 and F_2, we can always find a map that preserves angles.
Conformal maps don’t always exist in genus > 0

A close to conformal map of genus-two surfaces. (Amenta)
From smooth to discrete

The theory of conformal maps is well developed for smooth surfaces.

What can we say about discrete surfaces?
What is a discrete conformal map?

Many definitions and algorithms exist:

1. Discrete Ricci Flow
2. Discrete Yamabe Flow
3. Conformal Mean Curvature Flow
4. Harmonic Maps
5. Finite Elements
6. Optimize a cost function
7. Discrete Differential Equation
8. Wilmore Flow
9. Circle Packings
Good and Bad triangulations

Warning: Working with discrete surfaces often requires special types of “nice” triangulations. eg Delaunay triangulations.
What does it mean to say that a map $f: F_1 \rightarrow F_2$ is conformal when the surfaces are triangulated rather than smooth? How do we compute f? How unique is f?
How to compute a conformal map

a. Compute discrete conformal map to round sphere.
b. Choose any Mobius transformation m.
c. Take $f = C_1 \circ m \circ C_2^{-1}$

This gives all possible conformal maps.
Implementing Conformal Mappings

Uniformization: Any genus-zero surface can be mapped conformally to a round sphere.

A variety of discrete conformal mapping algorithms exist. (Circle packing, Ricci flow, energy minimization ...)
Conformal map by Keenan Crane
What is the best conformal map?

We choose \(m \) to make \(f \) close to an isometry?

\(f \) is conformal. At each point \(x \) of \(F_1 \), \(f \) stretches lengths by a conformal factor \(\lambda_f(x) \). If \(\lambda_f(x) = 1 \) then \(f \) is an isometry.

Idea: Measure how \(\lambda_f(x) \) differs from 1.
Definitions:

Symmetric Distortion Energy:

\[E_{sd}(f) = \sqrt{\int_{F_1} (1 - \lambda_f(z))^2 \, dA_1} + \sqrt{\int_{F_2} (1 - \lambda_{f^{-1}}(z))^2 \, dA_2}. \]

The smallest energy among all conformal maps from \(F_1 \) to \(F_2 \) defines a distance:

Symmetric Distortion distance:

\[d_{sd}(F_1, F_2) := \inf_{f \in \mathcal{C}} E_{sd}(f). \]
Properties of d_{sd}

$$d_{sd} = \inf_{f \in C} \sqrt{\int_{F_1} (1 - \lambda(f))^2 \, dA_1} + \sqrt{\int_{F_2} (1 - \lambda(f^{-1}))^2 \, dA_2}$$

Theorem (H-Koehl)

Given two genus-zero surfaces $F_1, F_2,

1. There is a conformal diffeomorphism $f : F_1 \rightarrow F_2$ with $E_{sd}(f) = d_{sd}$.
2. d_{sd} gives a metric on the space of Riemannian genus-zero surfaces.

Idea of proof: Show that E_{sd} is a proper map on the space of conformal diffeomorphisms ($PSL(2, \mathbb{C})$).

Question: What does d_{sd} tell us about the resemblance of two shapes?

The hope: Sensitive to change in shape. Not sensitive to noise.
Discrete Version

Optimizing the conformal map

\[E_{sd}(f) = \sqrt{\sum_{(v,v') \in F_1} \frac{A_{vv'}}{3} \left(\frac{l(f(v), f(v'))}{l(v,v')} - 1 \right)^2} + \sqrt{\sum_{(u,u') \in F_1} \frac{A_{uu'}}{3} \left(\frac{l(f^{-1}(u), f^{-1}(u'))}{l(u,u')} - 1 \right)^2} \]
Experiment: Ellipsoids

Distance d_{sd}

All ellipsoids have area $= 1$

$A = \text{principle axis}$
Noise

N = 0

N = 1.0

N = 10.0

B)

\[d_{\text{diff}} \]

\[
\begin{align*}
\text{N, Noise} & \quad 10^{-1} & & 10^{0} & & 10^{1} \\
\end{align*}
\]
Remeshing - changing triangulations

Distance $d(S_1, S_2)$ where S_1 is a sphere with 1000 uniformly distributed points and S_2 has N vertices, distributed uniformly (blue) or randomly (red).
How do shapes align?

Rotate one of three bumps on a sphere
Practice Problem: How Round is an object?

Perhaps the simplest shape question: How round is an object? or How close is an object to a round sphere.

We measure the distance from objects to the round sphere.
How Round is a Platonic Solid?
How round are the Platonic Solids?
How round is a Protein?

A)
B)
C)
D)
E)
F)
Protein Surfaces

Proteins are complex molecules whose function in biology is largely determined by their shape.

Proteins can be flexible, like the calmodulin protein above. We would like to compare the “surfaces” of two proteins.
From Protein to Surface

Define a surface that envelops the protein.
Triangulated Surface from Protein

Two representations of a protein, a stick model and a molecular surface model.
Experiment - Roundness of 533 Proteins

The graph shows the number of proteins against the roundness metric $E_n(f)$. The proteins $1gci00$, $1hcrA0$, and $1wwcA0$ are highlighted with corresponding 3D structures.
Experiment - A non-rigid Protein

![Graph showing cRMS and Elastic energy](image_url)

- cRMS (Å)
- Conformation #
- Elastic energy, $E(f)$

Experiment - A non-rigid Protein
Neuroscientists want to understand the alignment of sulci.
Computing distance between Brain Cortices

Find conformal maps to the sphere for each cortex
Step 1: Brain Cortex to Sphere

A) Brain Cortex

B) Sphere Representation

D) Projection onto Sphere
Computing distance between Brain Cortices

Choose M so that C minimizes stretching energy among all conformal maps.
Computing distance between Brain Cortices

This gives a distance d_{sd} between the two brain surfaces.
How well does this work?

This alignment minimizes E_{sd}. It was produced with no human input.
Results
MatchSurf uses no landmarks or human input. It produces conformal alignments. Other methods use landmarks and generate non-conformal alignments.
What if we do want landmarks?

Find cortex correspondence matching marked points.
Place index-2 cone points with cone angle π at endpoints of 8 sulci (4 on each half of the cortex).

Globally Optimal Cortical Surface Matching with Exact Landmark Correspondence

IPMI 2013: Information Processing in Medical Imaging, 487-498

Alex Tsui, Devin Fenton, Phong Vuong, Joel Hass, Patrice Koehl, Nina Amenta, David Coeurjolly, Charles DeCarli, Owen Carmichael
Hyperbolic Orbifolds

(2,2,2,2,2,2) orbifold
Covers a (2,3,8) triangle
Octahedron

(2,2,2,2,2,2,2,2,2,2,2,2) orbifold
Covers a (2,3,10) triangle
Icosohedron

Pictures by Gerard Westendorp
Uniformize

$B_1 \rightarrow O_1$

Compute hyperbolic orbifold metric for each brain. (We used Bobenko-Pinkall-Springborn).
Minimize the Dirichlet energy of $f: O_1 \rightarrow O_2$

There is a *unique* harmonic diffeomorphism in each isotopy class (Eells-Sampson).

This gives a *canonical alignment*.
We get a *canonical* alignment that exactly matches chosen landmark points. Conformality is comparable to other methods. (But other methods are not canonical)
Acknowledgements

Mobius Voting for Surface Correspondence
Yaron Lipman, Thomas Funkhouser
ACM Transactions on Graphics (Proc. SIGGRAPH), August 2009

Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces
Doug M. Boyer*, Yaron Lipman*, Elizabeth St. Clair, Jesus Puente, Biren A. Patel,
Thomas Funkhouser, Jukka Jernvall, and Ingrid Daubechies
PNAS, vol. 108 no. 45, November 8, 2011

Computing General Geometric Structures on Surfaces Using Ricci Flow
Miao Jin, Feng Luo, and Xianfeng Gu.
Thanks for coming!
Morphometrices

A traditional approach to measuring distance between shapes.

Requires human expertise.
Expensive and slow and error prone.
Triangulated Surfaces from Bones

Metatarsal (toe) bones from 23 old and new world monkeys and 38 prosimians
(Boyer, Debauchies, Lipman, et al}
Distance between Teeth

Flying lemur A
(0.26)

Tree shrew A
(0.55)

Flying lemur B

Tree shrew B
(0.55)

(0.25)
Proximal radius turned from a disk to a sphere.
Distance between Toe Bones

Metatarsal bones of primates
Comparing results

Evolutionary tree based only on metatarsal bone shapes.
Some results

ROC tests on 61 metatarsals, 45 radius surfaces, 99 teeth. Red is optimal diffeomorphism, Blue is optimal transport, Black and Purple are expert observers.
Distal radius

Analysis of anatomical data

ROC (Receiver Operating Characteristic) Analysis
Metatarsal

Analysis of anatomical data

ROC (Receiver Operating Characteristic) Analysis

First Metatarsal: Family

- Observer
- Cp
- Map

Fraction of FP (%) vs. Fraction of TP (%)
Teeth
This tree is generated from a distance between metatarsal bones.