Alpha Shapes Extended
Singapore 2017

Herbert Edelsbrunner
IST Austria
I BioGeometry

II Wrap

III Persistence

IV Expectation
FROM PROTEINS TO SIMPLICIAL COMPLEXES

HEMOGLOBIN

OXYGEN TRANSPORT
From Proteins to Simplicial Complexes

Hemoglobin protein = \(\cup \) balls in \(\mathbb{R}^3 \)

Oxygen Transport

Voronoi \downarrow + nerve

\(\alpha \)-complex
FROM PROTEINS TO SIMPLICIAL COMPLEXES
From Proteins to Simplicial Complexes
From Proteins to Simplicial Complexes

Voronoi domains $V(x)$
From Proteins to Simplicial Complexes

Delaunay complex of X for radius r is $D_r(x) = \{ P \subseteq X \mid \bigcap_{x \in P} [B_r(x) \cap V(x)] \neq \emptyset \}$.
From Proteins to Simplicial Complexes

DeLaunay complex of X for radius r is $D_r(X) = \{ p \in X | \bigcap_{x \in p} [B_r(x) \cap V(x)] \neq \emptyset \}$.
DeLaunay complex of X for radius r is $D_r(X) = \{ p \in X \mid \bigcap_{x \in p} [B_r(x) \cap V(x)] \neq \emptyset \}$.

FROM PROTEINS TO SIMPLICIAL COMPLEXES
Inclusion - Exclusion

Theorem:

$$\text{Vol}(UB) = \sum_{Q \in \mathcal{Q}(x)} (-1)^{\dim Q} \text{Vol}(\cap Q).$$
Inclusion - Exclusion

Theorem:

\[
\text{Vol}(UB) = \sum_{Q \in \mathbb{D}(X)} (-1)^{\dim Q} \text{Vol}(\cap Q).
\]
Inclusion-Exclusion

Theorem:

\[\text{Vol}(UB) = \sum_{Q \in \mathcal{Q}(X)} (-1)^{\dim Q} \text{Vol}(\cap Q). \]
Inclusion-Exclusion

Theorem:

\[\text{Vol}(UB) = \sum_{Q \in D(x)} (-1)^{\dim Q} \text{Vol}(\cap Q). \]
Inclusion-Exclusion

Theorem:

\[
\text{Vol}(UB) = \sum_{Q \in D(x)} (-1)^{\dim Q} \text{Vol}(\cap Q).
\]

[E. 1995]
Inclusion - Exclusion

Theorem:

\[\text{Vol}(UB) = \sum_{Q \in \Omega(x)} (-1)^{\dim Q} \text{Vol}(\cap Q). \]

[Ref. 1995]

Extends to voids, pockets, area, area derivative, volume derivative.
Nerve Theorem

[Lesay 1946]
Nerve Theorem

\[D_r(x) = \text{Nerve} \{ B_r(x) \cap V(x) \mid x \in X \}. \]
Nerve Theorem

\[D_r(X) = \text{Nerve} \{ B_r(x) \cap V(x) \mid x \in X \}. \]

/ covering of \(\bigcup_{x \in X} B_r(x) \) with convex sets
Nerve Theorem

\[D_r(X) = \text{Nerve} \left\{ B_r(x) \cap V(x) \mid x \in X \right\}. \]

\[\text{covering of } \bigcup_{x \in X} B_r(x) \text{ with convex sets} \]

\[\Rightarrow D_r(X) \text{ and } \bigcup_{x \in X} B_r(x) \text{ have same homotopy type} \]
I BIO GEOMETRY
II WRAP
III PERSISTENCE
IV EXPECTATION
COLLAPSES

(elem.) collapse
Collapses

(elem.) collapse
Collapses

(elem.) collapse

interval

\([L, U] = \{L \leq Q \leq U\}\)
Gen. Discrete Morse Function

gen. discrete vector field = partition into intervals
admits generalized discrete Morse function if acyclic
Gen. Discrete Morse Function

\[\text{gen. discrete vector field} \quad = \quad \text{partition into intervals} \]

admits generalized discrete Morse function if acyclic

[Forman 1998]
Gen. Discrete Morse Function

gen. discrete vector field = partition into intervals
admits generalized discrete Morse function if acyclic

[Forman 1998]
Generalized Discrete Morse Function

general discrete vector field = partition into intervals
admits generalized discrete Morse function if acyclic

[Forman 1998]
Gen. Discrete Morse Function

gen. discrete vector field = partition into intervals
admits generalized discrete Morse function if acyclic

[Forman 1998]
Wrap Complex

lower set of critical simplex, \(Q_t \)
Wrap Complex

lower set of critical simplex, \(Q_b \)

wrap complex for radius \(r \) is

\[
\text{Wrap}(r) = \bigcup_{Q \in Q_b} Q \quad \text{if} \quad R(Q) \leq r
\]

[E. 1996]
INTERFACES [Ban, E., Rudolph 2005]
I BioGeometry
II Wrap
III Persistence
IV Expectation
Betti #s in \mathbb{R}^3: $eta_0 = \# \text{components}$

$eta_1 = \# \text{tunnels}$

$eta_2 = \# \text{voids}$
Betti #s in \mathbb{R}^3: $\beta_0 = \text{# components}$
$\beta_1 = \text{# tunnels}$
$\beta_2 = \text{# voids}$

vertex \[\bullet \beta_0^{++} \]
Betti #s in \mathbb{R}^3:

- $\beta_0 = \#\text{components}$
- $\beta_1 = \#\text{tunnels}$
- $\beta_2 = \#\text{voids}$

Vertex: $\bullet \beta_{0++}$

Edge: β_{i--}, $\beta_{i++]$
Betti #s in \mathbb{R}^3: $\beta_0 = \# \text{components}$
$\beta_1 = \# \text{tunnels}$
$\beta_2 = \# \text{voids}$

Vertex

Edge

Triangle
Betti #s

in \mathbb{R}^3:
- β_0 = # components
- β_1 = # tunnels
- β_2 = # voids

- **Vertex**
- **Edge**
- **Triangle**
- **Tetrahedron**
Incremental Algorithm

\[\beta_0 = \beta_i = \ldots = \beta_n = 0; \]

for i = 1 to m do

\[k = \dim Q_i; \]

if \(Q_i \) is k-cycle then \(\beta_i \)++

else \(\beta_i \)--

endif

endfor
Incremental Algorithm

\[\beta_0 = \beta_1 = \ldots = \beta_n = 0; \]
for \(i = 1 \) to \(m \) do
 \[k = \text{dim} \ Q_i; \]
 if \(Q_i \in k\text{-cycle} \) then \(\beta_i++ \) (birth)
 else \(\beta_{i-1}-- \) (death)
endif
endfor

[DeFonado, E. 1995]
Number of Tunnels
Persistence

... \rightarrow H(X_{i-1}) \rightarrow H(X_i) \rightarrow ... \rightarrow H(X_{j-1}) \rightarrow H(X_j) \rightarrow ...
Persistence

\[\ldots \rightarrow H(X_{i-1}) \rightarrow H(X_i) \rightarrow \ldots \rightarrow H(X_{j-1}) \rightarrow H(X_j) \rightarrow \ldots \]
Persistence

\[\ldots \rightarrow H(X_{i-1}) \rightarrow H(X_i) \rightarrow \ldots \rightarrow H(X_{j-1}) \rightarrow H(X_j) \rightarrow \ldots \]

\(\alpha \) is born at \(X_i \)
PERSISTENCE

\[\ldots \rightarrow H(X_{i-1}) \rightarrow H(X_i) \rightarrow \ldots \rightarrow H(X_{j-1}) \rightarrow H(X_j) \rightarrow \ldots \]

\(\alpha \) is born at \(X_i \)
Persistence

\[\ldots \rightarrow H(x_{i-1}) \rightarrow H(x_i) \rightarrow \ldots \rightarrow H(x_{j-1}) \rightarrow H(x_j) \rightarrow \ldots \]

\(\alpha \) is born at \(x_i \) and dies entering \(x_j \)
Persistence

\[\ldots \rightarrow H(X_{i-1}) \rightarrow H(X_i) \rightarrow \ldots \rightarrow H(X_{j-1}) \rightarrow H(X_j) \rightarrow \ldots \]

\(\alpha \) is born at \(X_i \) and dies entering \(X_j \)

[E., Letsches, Zamorodian 2000]
Stability of persistence.
Stability

Bottleneck distance between two diagrams is length of longest edge in minimizing matching: $W_{bo}(\text{Dgm}(f), \text{Dgm}(g))$
Stability

Bottleneck distance between two diagrams is length of longest edge in minimizing matching: $\omega_0(Dgm(f), Dgm(g))$

Thm. $\omega_0(Dgm(f), Dgm(g)) \leq \|f-g\|_\infty$.

[Cohen-Steiner, E, Harer 2007]
I BioGeometry
II Wrap
III Persistence
IV Expectation
Poisson Point Process
(with density $\lambda > 0$ in \mathbb{R}^n)

1. #pts in disjoint sets are independent
2. $E[\#\text{pts in } B] = \lambda |B|$
Poisson Point Process
(with density $\gamma > 0$ in \mathbb{R}^n)

1. $\#$pts in disjoint sets are independent
2. $E[\#\text{pts in } B] = \gamma \| B \|$

$TP[\#\text{pts in } B = k] = \frac{(\gamma \| B \|)^k}{k!} e^{-\gamma \| B \|}$.
Poisson Point Process
(with density \(g > 0 \) in \(\mathbb{R}^n \))

1. \#pts in disjoint sets are independent

2. \(E[\#pts \text{ in } B] = g \|B\| \)

\[
P[\#pts \text{ in } B = k] = \frac{(g\|B\|)^k}{k!} e^{-g\|B\|}.
\]

Points are in general position with prob. 1.
Expectations in \mathbb{R}^n

X chosen from PPP with density $g > 0$ in \mathbb{R}^n.

$\Omega \subseteq \mathbb{R}^n$, $l = \dim L$, $k = \dim U$.
Expectations in \mathbb{R}^n

x chosen from PPP with density $g > 0$ in \mathbb{R}^n.

$\Omega \subseteq \mathbb{R}^n; \quad l = \dim L, \quad k = \dim U.$

Thm. For $0 \leq l \leq k \leq n$ there is a constant $C_{\ell,k}^n$ such that

$$\mathbb{E}[\# \text{int}_{\ell,k} \text{ in } \Omega \text{ with } r_D \leq r] = \frac{x(k, q_{\ell,n} r^n)}{\Gamma(k)} \cdot C_{\ell,k}^n \cdot g \|\Omega\|.$$
Expectations in \mathbb{R}^n

X chosen from PPP with density $g > 0$ in \mathbb{R}^n.

$\Omega \subseteq \mathbb{R}^n$; $l = \text{dim } L$, $k = \text{dim } U$.

Thm. For $0 \leq l \leq k \leq n \exists$ constant $C_{l,k}^n$ such that

$$E[\# \text{int}_{l,k} \text{ in } \Omega \text{ with } r_D \leq r] = \frac{x(k, gn \pi^n)}{\Gamma(k)} \cdot C_{l,k}^n \cdot g \| \Omega \|.$$

[E., Nikitenko, Reitzner 2016]
Critical Simplices and Intervals

<table>
<thead>
<tr>
<th>$C_{e,l}^2$</th>
<th>$k = 0$</th>
<th>1</th>
<th>2</th>
<th>$C_{e,l}^3$</th>
<th>$k = 0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td>$l = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
<td>2.55</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>4.85</td>
<td>3.70</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1.85</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$C_{e,l}^4$</th>
<th>$k = 0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.66</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.55</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>17.66</td>
<td>11.14</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>15.40</td>
<td>14.22</td>
<td>4.74</td>
</tr>
</tbody>
</table>
Delaunay Simplices

\[E[\# \text{j-simplex in Del}] = D_j^n \cdot g \| \Omega \| \]

\[D_j^n = \sum_{k=j}^{n} \sum_{\ell=0}^{j} (k-j) C_{\ell,k} \]
Delaunay Simplices

\[E[\# j\text{-simple}. \text{ in } \Omega] = D^n_j \cdot \|\Omega\|. \]

\[D^n_j = \sum_{k=j}^n \sum_{\ell=0}^{j} \binom{k-\ell}{j-\ell} C^n_{\ell,k} \]

<table>
<thead>
<tr>
<th>D^n_j</th>
<th>j = 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7.76</td>
<td>13.53</td>
<td>6.76</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>18.88</td>
<td>65.55</td>
<td>79.44</td>
<td>31.77</td>
</tr>
</tbody>
</table>

blue = [Miles 1970/71]
red = [E, Nikiforov, Reitnes 2016]
DEPENDENCE ON RADIUS intervals in \mathbb{R}^2
Dependence on Radius

intervals in \(\mathbb{R}^3 \)
DEPENDENCE ON RADIUS

intervals in \mathbb{R}^4
Dependence on Radius

Delaunay simplices in \mathbb{R}^2
DEPENDENCE ON RADIUS

Delaunay simplices in \mathbb{R}^3
DEPENDENCE ON RADIUS

Delaunay simplices in \(\mathbb{R}^4 \)
Three Points on Circle
Three Points on Circle
Three Points on Circle

\[\text{area}(\triangle ABC) = a + b + c \]
Three Points on Circle

\[\text{area}(ABC) = a + b + c \]

\[-\text{area}(ABC) = -a + b + c \]
Three Points on Circle

\[\text{area}(ABC) = a + b + c \]
\[-A\overline{BC} = -a + b + c \]
\[\overline{AB}C = a - b + c \]
\[-A\overline{B}C = -a - b + c \]
\[\overline{A}\overline{B}C = -a + b - c \]
\[-A\overline{B}\overline{C} = -a - b - c \]
THANK YOU