Section 1

The ITTM model
An infinite-time Turing machine is a Turing machine with three tapes whose cells are indexed by natural numbers:

- The input tape
- The output tape
- The working tape

It behaves like a standard Turing machine at successor steps of computation.
Infinite time Turing machines

At limit steps of computation:

- The head goes back to the first cell.
- The machine goes into a “limit” state.
- The value of each cell equals the lim inf of the values at previous stages of computation.
What is the equivalent of computable for an ITTM?

Definition

A real X is **writable** if there in an ITTM M such that:

$M(0) \downarrow [\alpha] = X$ for some ordinal α.

- **M starts with 0 on its input tape**
- **M enters its halting state at step $\alpha + 1$**
- **X is on the output tape when M halts**

$M(0) \downarrow [\alpha] = X$
Decidable classes

Which reals are writable?

Definition
A class of real \mathcal{A} is **decidable** if there is an ITTM M such that $M(X) \downarrow = 1$ if $X \in \mathcal{A}$ and $M(X) \downarrow = 0$ if $X \notin \mathcal{A}$.

Proposition (Hamkins, Lewis)
The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff $n < m$) is decidable.
Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff $n < m$) is decidable.

The algorithm is as follow, where $<$ is the order coded by X:

Algorithm to decide well-orders

\begin{algorithm}
\textbf{while} $<$ is not empty \textbf{do}
\begin{algorithmic}
 \State Look for the smallest element a of $<$ (coded by X)
 \If {there is no smallest element}
 \State write 0 and halts
 \Else
 \State remove a from the support of $<$
 \EndIf
\EndWhile
\State When $<$ is empty, write 1 and halts.
\end{algorithmic}
\end{algorithm}
Decide well-orders

How to find the smallest element?

Algorithm to find the smallest element

Write 1 on the first cell. Set the current element $c = +\infty$

if state is successor then
 if there exists $a < c$ then
 Update $c = a$
 Flip the first cell to 0 and then back to 1
 end
else
 if the first cell is 0 then
 There is no smallest element
 else
 c is the smallest element
 end
end
Decidable and writable sets

Proposition (Hamkins, Lewis)
The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff $n < m$) is decidable.

Corollary (Hamkins, Lewis)
Every Π^1_1 set of reals is decidable.

Corollary (Hamkins, Lewis)
Every Π^1_1 set of integers is writable.
Computational power of ITTM

ω_1^{ck} steps of computations are enough to write any Π^1_1 set of integers. But there is no bound in the ordinal step of computation an ITTM can use.

Using a program that writes Kleene’s O, we can design a program which writes the double hyperjump O^O and then $O^{(O^O)}$ and so on.

Where does it stop?

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1.
Computational power of ITTM

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1.

The configuration of an ITTM is given by:

1. Its tapes
2. Its state
3. The position of the head.

Let $C(\alpha) \in 2^\omega$ be a canonical encoding of the tapes of an ITTM at stage α.

There must be some *limit ordinal* $\alpha < \omega_1$ such that $C(\alpha) = C(\omega_1)$. The full configuration of the machine at step ω_1 is then the same than the one step α.

Computational power of ITTM

\[\omega_1 \]

\[\sup_n \alpha_n^+ \]

\[\alpha_2^+ > \alpha_1^+ \]

\[\alpha_1^+ > \alpha_0 \]

\[\alpha_0 \]

\[\alpha_0 : \text{The smallest ordinal such that every cell converging at step } \omega_1 \text{ (in green) will never change pass that point.} \]

\[\alpha_{n+1}^+ : \text{The smallest ordinal } > \alpha_n^+ \text{ such that the } n+1 \text{ non-converging cells (in red) change value at least once in the interval } [\alpha_n^+, \alpha_{n+1}^+] \]
Beyond the writable ordinals

Definition (Hamkins, Lewis)

An ordinal α is **writable** if there is an ITTM which writes an encoding of a well-order of ω with order-type α.

Proposition (Hamkins, Lewis)

The writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let λ be the supremum of the writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which writes λ on its output tape, then leave the output tape unchanged without ever halting.
Beyond the writable ordinals

Proposition (Hamkins, Lewis)
There is a universal ITTM U which runs simultaneously all the ITTM computations $P_e(0)$ for every $e \in \omega$.

Algorithm to eventually write λ

```latex
\textbf{for} every stage $s$ \textbf{do}
    \begin{itemize}
    \item Run the universal machine $U$ for one step.
    \item Compute the sum $\alpha_s$ of all ordinals which are on the output tapes of programs simulated by $U[s]$ and which have terminated.
    \item Write $\alpha_s$ on the output tape.
    \end{itemize}
\textbf{end}
```

Let s be the smallest stage such that every halting ITTM have halted by stage s in the simulation U.

1. We clearly have $\alpha_s \geq \lambda$.
2. We clearly have that $\alpha_t = \alpha_s$ for every $s \geq t$.
Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)
A real is **eventually writable** if there is an ITTM and a step α such that for every $\beta \geq \alpha$, the real is on the output tape at step β.

Proposition (Hamkins, Lewis)
The eventually writable ordinals are an initial segment of the ordinals.

Definition (Hamkins, Lewis)
Let ζ be the supremum of the eventually writable ordinals.

Proposition (Hamkins, Lewis)
There is an ITTM which at some point writes ζ on its output tape.
Beyond the eventually writable ordinals

Algorithm to accidentally write ζ

for every stage s do
 Run the universal machine U for one step.
 Compute the sum α_s of all ordinals which are on the output
tapes of programs simulated by $U[s]$.
 Write α_s on the output tape.
end

Let s be the smallest stage such that every ITTM writing an eventually writable ordinal, have done so by stage s in the simulation U. We clearly have $\alpha_s \geq \zeta$.
Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **accidentally writable** if there in an ITTM and a step α such that the real is on the output tape at step α.

Proposition (Hamkins, Lewis)

The accidentally writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let Σ be the supremum of the accidentally writables.

Proposition (Hamkins, Lewis)

We have $\lambda < \zeta < \Sigma$.
ITTM and constructibility

Section 2

ITTM and constructibility
The constructibles

Definition (Godel)

The **constructible universe** is defined by induction over the ordinals as follows:

\[
\begin{align*}
L_\emptyset &= \emptyset \\
L_{\alpha^+} &= \{ X \subseteq L_\alpha : X \text{ is f.o. definable with param. in } L_\alpha \} \\
L_{\sup_n \alpha_n} &= \bigcup_n L_{\alpha_n}
\end{align*}
\]

Theorem (Hamkins, Lewis)

- If \(\alpha \) is writable and \(X \in 2^\omega \cap L_\alpha \) then \(X \) is writable.
- If \(\alpha \) is eventually writable and \(X \in 2^\omega \cap L_\alpha \) then \(X \) is eventually writable.
- If \(\alpha \) is accidentally writable and \(X \in 2^\omega \cap L_\alpha \) then \(X \) is accidentally writable.
The admissibles

Definition (Admissibility)

An ordinal α is **admissible** if L_α is a model of Σ_1-replacement. Formally for any Σ_1 formula Φ with parameters and any $N \in L_\alpha$ we must have:

\[
\begin{align*}
L_\alpha & \models \forall n \in N \exists z \Phi(n, z) \\
\rightarrow \quad L_\alpha & \models \exists Z \forall n \in N \exists z \in Z \Phi(n, z)
\end{align*}
\]

$\omega, \omega_{1}^{ck}, \omega_{2}^{ck}, \omega_{3}^{ck}, etc...$ are the first admissible ordinals.

Consider the formula $\exists n \forall k < n \exists m A(n, k, m)$ (with $A \Delta_0$). The formula is Σ_1 : This is because if for every $k < n$, there exists a witness m_k such that $A(n, k, m_k)$, then $\sup_k m_k$ is still finite.

The admissible are the sets for which this property is still true.
The admissibles

Proposition (Hamkins, Lewis)
The ordinals λ and ζ are admissible.

Suppose that for some $N \in L_\lambda$ and a Σ_1 formula Φ we have:

$$L_\lambda \models \forall n \in N \exists z \Phi(n, z)$$

We define the following ITTM:

Algorithm to show λ admissible

- Write a code for N
 - for every $n \in N$ do
 - Look for the first writable α_n such that $L_{\alpha_n} \models \exists z \Phi(n, z)$
 - Write α_n somewhere.
 - end

- Write $\sup_{n \in N} \alpha_n$
The admissibles

Proposition (Hamkins, Lewis)

The ordinals λ is the λ-th admissible.
The ordinals ζ is the ζ-th admissible.

Suppose λ is the α-th admissible for $\alpha < \lambda$.

Algorithm to show λ is the λ-th admissible

Write α

while $\alpha > 0$ do

Look for the smallest element e of α and remove it from α

Look for the next admissible writable ordinal and write it to the e-th tape

end

Write the smallest admissible greater than all the one written previously.
How big is λ

Definition
An ordinal is **recursively inaccessible** if it is admissible and limit of admissible.

Proposition (Hamkins, Lewis)
The ordinals λ is the λ-th recursively admissible.
The ordinals ζ is the ζ-th recursively admissible.

Definition
An ordinal is **meta-recursively inaccessible** if it is admissible and a limit of recursively inaccessible.

Proposition (Hamkins, Lewis)
The ordinals λ is the λ-th meta recursively admissible.
The ordinals ζ is the ζ-th meta recursively admissible.
The clockable ordinals

Section 3

The clockable ordinals
The clockable ordinals

Another notion will help us to understand better λ, ζ and Σ

Definition (Hamkins, Lewis)

An ordinal α is **clockable** if there is an ITTM which halts at stage α (at stage α it decides to go into the halting state).

What is the supremum of the clockable ordinals?

Definition (Hamkins, Lewis)

Let γ be the supremum of the clockable ordinals.

Proposition (Hamkins, Lewis)

We have $\lambda \leq \gamma$.
The clockable ordinals

Proposition (Hamkins, Lewis)

We have $\lambda \leq \gamma$.

Suppose the ITTM M writes α. Then one can easily create an ITTM which does the following:

Algorithm to countdown α

Use M to write α

while $\alpha > 0$ **do**

1. Find the smallest element of α and remove it from α.

end

Enter the halting state.

It is easy to see that the above algorithm takes at least α step before it ends.
Understanding the clockables

Theorem (Hamkins, Lewis)

The clockable ordinals are not an initial segment of the ordinals: If α is admissible then no ITTM halts in α steps.

For α limit to be clockable we need for some $i \in \{0, 1\}$ to have both :

1. A transition rule of the form: $(\text{limit, } i) \rightarrow \text{halt}$

2. The first cell to contain i at step α

If $\{C_i(\gamma)\}_{\gamma < \alpha}$ converges we have a limit $\beta < \alpha$ s.t. $C_i(\beta) = C_i(\alpha)$

\rightarrow We have (1) and (2) for $\beta < \alpha$

If $\{C_i(\gamma)\}_{\gamma < \alpha}$ diverges, let:

$f(n + 1) =$ the smallest $\alpha > f(n)$ s.t. $C_0(\beta)$ changes for $\beta \in [f(n), \alpha]$

\rightarrow By admissibility $\sup_n f(n) < \alpha$ and we have (1) and (2) for $\sup_n f(n)$

In both cases the machine stopped before stage α.
Understanding the clockables

Definition (Hamkins, Lewis)

A **gap of size** α in the clockable ordinals is an interval of ordinals $[\alpha_0, \alpha_0 + \alpha]$ such that no ITTM halts in this interval, but some halt after that.

Theorem (Hamkins, Lewis)

For any writable α, there is a gap of size at least α in the clockable ordinals.
Algorithm to witness gap of size α

Run the universal ITTM

```
while true do
  if a new ordinal $\alpha_0$ is written on a tape then
    if no ITTM halts in the interval $[\alpha_0, \alpha_0 + \alpha]$ then
      Write $\alpha_0 + \alpha$ and halt.
    end
  end
end
```

Note that if α is writable then $\lambda + \alpha < \zeta < \Sigma$. Suppose there is no gap of size α.

→ Then the algorithm will at some point:

1. Eventually write λ and will see that no ITTM halts in $[\lambda, \lambda + \alpha]$

2. Write $\lambda + \alpha$ and halts

This is a contradiction.
Understanding λ, ζ, Σ

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha<\lambda}$ converges, then for every $\alpha \in [\lambda, \Sigma]$ we have $C_i(\alpha) = C_i(\lambda)$.

Suppose w.l.o.g. that $\{C_i(\alpha)\}_{\alpha<\lambda}$ converges to 0. Let β be the smallest such that for all $\alpha \in [\beta, \lambda]$ we have $C_i(\alpha) = 0$.

Algorithm

```
for every $\alpha > \beta$ written by $U$ do
    Simulate another run of $U$ for $\alpha$ steps
    if $C_i(\gamma) = 1$ for $\gamma \in [\beta, \alpha]$ then
        Write $\alpha$ and halt.
    end
end
```

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$. Then U will write such an ordinal at some point, and the above program will then write $\alpha > \lambda$ and halt. This is a contradiction.
Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ. In particular, it enters an infinite loop at stage ζ.

The theorem follows from the two following lemmas:

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges, then for every $\alpha \in [\zeta, \Sigma]$ we have $C_i(\alpha) = C_i(\zeta)$.

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ diverges, then the sequence $\{C_i(\alpha)\}_{\alpha < \Sigma}$ diverges.
Understanding λ, ζ, Σ

Suppose w.l.o.g. that $\{C_i(\alpha)\}_{\alpha<\zeta}$ converges to 0.
Let β be the smallest such that for all $\alpha \in [\beta, \zeta]$ we have $C_i(\alpha) = 0$.
The ordinal β is eventually writable through different versions $\{\beta_s\}_{s \in \text{ORD}}$

Algorithm

\begin{verbatim}
for every s and every $\alpha > \beta_s$ written by U do
 Simulate another run of U for α steps
 if $C_i(\gamma) = 1$ for $\gamma \in [\beta_s, \alpha]$ and β_s has changed then
 Write α on the output tape.
end
\end{verbatim}

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$.
Then some ordinal $\alpha' \geq \alpha$ will be written at some stage at which β_s has stabilized.
Thus the above program will then eventually write some $\alpha' > \zeta$.
This is a contradiction.
Understanding λ, ζ, Σ

Suppose $\{C_i(\alpha)\}_{\alpha<\Sigma}$ converges.

Algorithm

Set $\beta = 0$

for every $\alpha > \beta$ written by U do

| Simulate another run of U for α steps |
| if $C_i(\gamma)$ changes for $\gamma \in [\beta, \alpha]$ then |
| Let $\beta = \alpha$ |
| Write α |

end

The algorithm will eventually write some ordinal α s.t. $\{C_i(\gamma)\}$ does not change for $\gamma \in [\alpha, \Sigma]$. But then α is eventually writable and $\{C_i(\alpha)\}_{\alpha<\zeta}$ converges.
Understanding λ, ζ, Σ

Theorem (Welch)
The whole state of an ITTM at step ζ is the same than its state at step Σ. In particular, it enters an infinite loop at stage ζ.

Corollary (Welch)
λ is the supremum of the clockable ordinals.

Indeed, suppose that we have $M(0) \downarrow [\alpha]$ for some M and α accidentally writable. Then we can run $M(0)[\beta]$ for every β accidentally writable until we find one for which M halts, and then write β. Thus α must be writable.

Suppose now that $M(0) \uparrow [\Sigma]$. Then M will never halt. Thus if M halts, it halts at a writable step.
Theorem (Welch)
The whole state of an ITTM at step ζ is the same than its state at step Σ. In particular, it enters an infinite loop at stage ζ.

Corollary (Welch)
- The writable reals are exactly the reals of L_λ.
- The eventually writable reals are exactly the reals of L_ζ.
- The accidentally writable reals are exactly the reals of L_Σ.

We can construct every successive configurations of a running ITTM. Also to compute a writable reals, there are less than λ steps of computation and then less than λ steps of construction. Thus every writable real is in L_λ.

The argument is similar for ζ and Σ.
Understanding λ, ζ, Σ

Definition

Let $\alpha \leq \beta$. We say that L_α is n-stable in L_β and write $L_\alpha <_n L_\beta$ if

$$L_\alpha \models \Phi \iff L_\beta \models \Phi$$

For every Σ_n formula Φ with parameters in L_α.

Theorem (Welch)

(λ, ζ, Σ) is the lexicographically smallest triplet such that:

$$L_\lambda <_1 L_\zeta <_2 L_\Sigma$$
Understanding λ, ζ, Σ

Theorem (Welch)

The ordinal Σ is not admissible.

To see this, we define the following function $f : \omega \rightarrow \Sigma :$

$$f(0) = \zeta$$
$$f(n) = \text{the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright n = C(\zeta) \upharpoonright n$$

It is not very hard to show that we must have $\sup_n f(n) = \Sigma$

Theorem (Welch)

The ordinal Σ is a limit of admissible.

Otherwise, if α is the greatest admissible smaller than Σ, one could compute $\Sigma \leq \omega_\alpha^\alpha$.
Section 4

ITTM and randomness
ITTM and randomness

Definition (Carl, Schlicht)

X is α-random if X is in no set whose Borel code is in L_α.

Definition

An open set U is α-c.e. if $U = \bigcap_{\sigma \in A}[\sigma]$ for a set $A \subseteq 2^{<\omega}$ such that:

$$\sigma \in A \leftrightarrow L_\alpha \models \Phi(\sigma)$$

for some Σ_1 formula Φ with parameters in L_α.

Definition (Carl, Schlicht)

X is α-ML-random if X is in no set uniform intersection $\bigcap_n U_n$ of α-c.e. open set, with $\lambda(U_n) \leq 2^{-n}$.
Projectibles and ML-randomness

Definition

We say that α is **projectible** into $\beta < \alpha$ if there is an injective function $f : \alpha \to \beta$ that is Σ_1-definable in L_α.

The least β such that α is projectible into β is called the **projectum** of α and denoted by α^*.

Theorem (Angles d’Auriac, Monin)

The following are equivalent for α limit such that $L_\alpha \models$ everything is countable:

- α is projectible into ω.
- There is a universal α-ML-test.
- α-ML-randomness is strictly stronger than α-randomness.
\textbf{Theorem}

The ordinal λ is projectible into ω without using any parameters.

Each writable ordinal can be effectively assigned to the code of the ITTM writing it.

\textbf{Corollary}

Most work in Δ^1_1 and Π^1_1-ML-randomness still work with λ-ML-randomness and λ-randomness. In particular λ-ML-randomness is strictly weaker than λ-randomness.
The ITTM model ITTM and constructibility The clockable ordinals ITTM and randomness

ζ-ML-randomness

Theorem
The ordinal ζ is not projectible into ω.

Suppose that an eventually writable parameter α can be used to have a projectum $f : \zeta \rightarrow \omega$. Then every eventually writable ordinal become writable using α. Then ζ becomes eventually writable using α. But then ζ is eventually writable.

Corollary
ζ-randomness coincides with ζ-ML-randomness. An analogue of Ω for ζ-randomness does not exists.
ζ-ML-randomness

Theorem

The ordinal ζ is not projectible into ω.

Corollary

For many writable ordinals α we have that α-randomness coincides with α-ML-randomness.

\[
L_{\Sigma} \models \exists \alpha \text{ not projectible into } \omega
\]

By the fact that $L_{\lambda} <_1 L_{\Sigma}$ we must have:

\[
L_{\lambda} \models \exists \alpha \text{ not projectible into } \omega
\]
The ordinal Σ is projectible into ω, using ζ as a parameter.

We can use the fact that (ζ, Σ) is the least pair such that:
$C(\zeta) = C(\Sigma)$, with the function:

\[
\begin{align*}
f(0) &= \zeta \\
f(n) &= \text{the smallest } \alpha \text{ s.t. } C(\alpha) \uparrow_n = C(\zeta) \uparrow_n
\end{align*}
\]

Every ordinal $f(n)$ is then Σ_1-definable with ζ as a parameter.

As $L_{\Sigma} \models \text{"everything is countable"}$, it follows that every ordinal smaller than $f(n)$ for some n is Σ_1-definable with ζ as a parameter.

As $\sup_n f(n) = \Sigma$, it follows that every accidentally writable is Σ_1-definable with ζ as a parameter.

The projectum is then a code for the formula defining each ordinal.
ITTM-random and ITTM-decidable random

Definition (Hamkins, Lewis)
A class of real \mathcal{A} is **semi-decidable** if there is an ITTM M such that $M(X) \downarrow$ if $X \in \mathcal{A}$.

Definition (Carl, Schlicht)
A sequence X is **ITTM-random** if X is in no semi-decidable set of measure 0.

Definition (Carl, Schlicht)
A sequence X is **ITTM-decidable random** iff X is in no decidable set of measure 0.
Lowness for λ, ζ, Σ

Definition

We say that X is low for λ if $\lambda^X = \lambda$.

We say that X is low for ζ if $\zeta^X = \zeta$.

We say that X is low for Σ if $\Sigma^X = \Sigma$.

Theorem

For any ordinal α with $\lambda \leq \alpha < \zeta$ we have $\lambda^\alpha > \lambda$ but:

1. $\zeta^\alpha = \zeta$.
2. $\Sigma^\alpha = \Sigma$.

(1) Indeed, suppose ζ is eventually writable using α and the machine M. As α is also eventually writable, we can run M on every version of α and eventually write ζ which is a contradiction.

(2) Same argument.
Lowness for λ, ζ, Σ

Theorem

The following are equivalent:

1. $\zeta^X > \zeta$.
2. $\Sigma^X > \Sigma$.
3. $\lambda^X > \Sigma$.

$(1) \rightarrow (2)$: We can again use the function:

$$f(0) = \zeta$$

$$f(n) = \text{the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright n = C(\zeta) \upharpoonright n$$

To show that every ordinal $f(n)$ becomes eventually writable uniformly in n. Thus $\Sigma = \sup_n f(n)$ is also eventually writable.

$(2) \rightarrow (3)$: Define the machine that looks for the first pair of ordinals $\alpha < \beta$ such that $L_\alpha \prec_2 L_\beta$. Then write β. These ordinals must be ζ and Σ.
Lowness for λ, ζ, Σ and randomness

Theorem

For any X the triplet $(\lambda^X, \zeta^X, \Sigma^X)$ is the lexicographically least pair such that $L_{\lambda^X}[X] <_1 L_{\zeta^X}[X] <_2 L_{\Sigma^X}[X]$.

Theorem (Carl, Schlicht)

If X is $(\Sigma + 1)$-random, then $L_{\lambda}[X] <_1 L_{\zeta}[X] <_2 L_{\Sigma}[X]$. In particular $\Sigma^X = \Sigma$, $\zeta^X = \zeta$ and $\lambda^X = \lambda$.

Corollary (Carl, Schlicht)

The set $\{X : \Sigma^X > \Sigma\}$ and $\{X : \lambda^X > \lambda\}$ are included in Borel sets of measure 0.
The ITTM model ITTM and constructibility The clockable ordinals ITTM and randomness

ITTM-decidable randomness

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X:

1. X is ITTM-decidable random
2. X is λ-random

Suppose some machine M decides a set of measure 0 that X belongs to. In particular it decides a set of measure 1 X does not belong to. We have:

$$\lambda(\{X : M(X) \downarrow = 0\}) = 1$$

We then have

$$\lambda(\{X : M(X) \downarrow [\lambda] = 0\}) = 1$$

as the set of X s.t. $\lambda^X = \lambda$ has measure 1. But then by admissibility:

$$\lambda(\{X : M(X) \downarrow [\alpha] = 0\}) = 1$$

already for some writable α. The complement of this set is a Borel set of measure 0, with a writable code, and containing X.
Theorem (Carl, Schlicht)

The following are equivalent for a sequence \(X \):

1. \(X \) is ITTM-random
2. \(X \) is \(\Sigma \)-random and \(\Sigma^X = \Sigma \)
3. \(X \) is \(\zeta \)-random and \(\Sigma^X = \Sigma \)

Lemma (Carl, Schlicht)

If \(\Sigma^X > \Sigma \), then \(X \) is not ITTM-random.

The set \(\{ X : \Sigma^X > \Sigma \} \) is an ITTM-semi-decidable set of measure 0. We saw that it is of measure 0. To see that it is ITTM-decidable, one can designe the machine which halts whenever it founds two \(X \)-accidentally writable ordinals \(\alpha < \beta \) such that \(L_\alpha <_2 L_\beta \).
Lemma (Carl, Schlicht)

If X is not Σ-random, then X is not ITTM-random.

If X is not Σ-random, then with X as an oracle, we can look for the first accidentally writable code for a Borel set of measure 0 containing X.

Lemma (Carl, Schlicht)

If X is ζ-random, but not ITTM-random, then $\Sigma^X > \Sigma$.

Suppose there is an ITTM M which semi-decide a set of measure 0 containing X. Suppose $M(X) \downarrow [\alpha]$. Then we must have $\alpha \geq \zeta$ as otherwise the set $\{X : M(X) \downarrow [\alpha]\}$ would be a set of measure 0 with a Borel code in L_{ζ}. Thus we must have $\lambda^X > \zeta$ and then $\Sigma^X > \Sigma$.
ITTM-randomness

Question
Does there exist X such that X is Σ-random but not ITTM random?

Question
If X is Σ-random, do we have $L_\zeta[X] <_2 L_\Sigma[X]$?