EFFICIENT ALGORITHMS FOR HARD PROBLEMS ON STRUCTURED ELECTORATES

Neeldhara Misra

IIT Gandhinagar
THE STANDARD VOTING SETUP

and some problems that we will encounter.
THE STANDARD VOTING SETUP

and some problems that we will encounter.

SINGLE PEAKED PREFERENCES

definition, recognition, strategy-proofness, elicitation
THE STANDARD VOTING SETUP
and some problems that we will encounter.

SINGLE PEAKED PREFERENCES
definition, recognition, strategy-proofness, elicitation

SINGLE CROSSING PREFERENCES
definition, recognition and Condorcet winners
THE STANDARD VOTING SETUP
and some problems that we will encounter.

SINGLE PEAKED PREFERENCES
definition, recognition, strategy-proofness, elicitation

SINGLE CROSSING PREFERENCES
definition, recognition and Condorcet winners

CONCLUDING REMARKS
nearly structured preferences, dichotomous preferences
THE STANDARD VOTING SETUP

and some problems that we will encounter.

The Handbook of Computational Social Choice,
Brandt, Conitzer, Endriss, Lang and Procaccia; 2016
A typical voting scenario involves a set of alternatives, and a set of voters.
A typical voting scenario involves a set of alternatives, and a set of voters.

Voters have preferences over the alternatives, which can be modelled in various ways.
A typical voting scenario involves a set of alternatives, and a set of voters.

Voters have preferences over the alternatives, which can be modelled in various ways.

In this talk, we’ll think of preferences as linear orders over the rankings.
A group of friends have an evening to spend.
We say that a voter (or a group of voters) can manipulate if they can obtain a more desirable outcome by misreporting their preferences.
We say that a voter (or a group of voters) can manipulate if they can obtain a more desirable outcome by misreporting their preferences.

We’ll see that plurality is vulnerable to this behaviour.
(Plurality)
Manipulation

(Plurality)
This scheme is intended only for honest men.
Elimination over multiple rounds
Pairwise Elections
An alternative that beats all the others in pairwise comparisons.
An alternative that beats all the others in pairwise comparisons.

(Condorcet)
An alternative that beats all the others in pairwise comparisons.
An alternative that beats all the others in pairwise comparisons.

may not exist!
Desirable properties of voting rules.
We’ll now pause to formally define social choice functions and social welfare functions.
Social Welfare Functions (SWF)
Social Choice Functions (SCF)
<table>
<thead>
<tr>
<th>Unanimity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Dinner</td>
</tr>
<tr>
<td>Violin</td>
</tr>
<tr>
<td>Coffee</td>
</tr>
<tr>
<td>Soccer</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Coffee</td>
</tr>
<tr>
<td>Violin</td>
</tr>
<tr>
<td>Dinner</td>
</tr>
<tr>
<td>Soccer</td>
</tr>
</tbody>
</table>
Unanimity
Unanimity

If everyone prefers A to B then the consensus ranking also prefers A over B.
Independence of Irrelevant Alternatives
Independence of Irrelevant Alternatives

<table>
<thead>
<tr>
<th>Group</th>
<th>Food</th>
<th>Music</th>
<th>Coffee</th>
<th>Sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>Meal</td>
<td>Violin</td>
<td>Cup</td>
<td>Soccer</td>
</tr>
<tr>
<td>People</td>
<td>Coffee</td>
<td>Violin</td>
<td>Meal</td>
<td>Soccer</td>
</tr>
<tr>
<td>People</td>
<td>Violin</td>
<td>Cup</td>
<td>Meal</td>
<td>Soccer</td>
</tr>
</tbody>
</table>
Independence of Irrelevant Alternatives
Independence of Irrelevant Alternatives

Suppose a SWF prefers A over B in the consensus ranking for a profile P.

Let Q be a profile that is the same as P when projected on the candidates A and B.

Then the SWF must prefer A over B in the consensus ranking that it determines for Q as well.
Arrow (1949)
Arrow (1949)

When voters have three or more alternatives, any social welfare function which respects **unanimity** and **independence of irrelevant alternatives** is a dictatorship.
Gibbard-Satterthwaite (1973/75)
Gibbard-Satterthwaite (1973/75)

Any strategy-proof SCF where at least three candidates have some chance of being selected must be a dictatorship.
Some Popular Workarounds
Some Popular Workarounds

Domain Restrictions
Some Popular Workarounds

Domain Restrictions
Randomised Voting Rules
Some Popular Workarounds

Domain Restrictions

Randomised Voting Rules

Computational Hardness
Some Popular Workarounds

Domain Restrictions

Randomised Voting Rules

Computational Hardness
SINGLE PEAKED PREFERENCES

definition, recognition, strategy-proofness, elicitation
SINGLE PEAKED PREFERENCES

Definition

The Theory of Committees and Elections.
Black, D., New York: Cambridge University Press, 1958
A B C D E F G

Left Center Right
Left: A, B, C, D, E, F, G
Center: E, D, C, F, G, B, A
Right: E, D, C, F, G, B, A
A B C D E F G

Left Center Right
If an agent with single-peaked preferences prefers x to y, one of the following must be true:

- x is the agent’s peak,
- x and y are on opposite sides of the agent’s peak, or
- x is closer to the peak than y.
The notion is popular for several reasons:

- No Condorcet Cycles.
- No incentive for an agent to misreport its preferences.
- Identifiable in polynomial time.
- Reasonable (?) model of actual elections.
SINGLE PEAKED PREFERENCES

Recognition

Stable Matching with Preferences Derived from a Psychological Model
Recognising if a given profile is single-peaked with respect to some preference ordering.

Checking if a 0/1 matrix has the consecutive-ones property.
A fixed permutation
A fixed permutation

A
B
C
D
E
F
G

E
D
F
C
B
A
G

0 0 0 0 0 1 0 0 0
A fixed permutation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A fixed permutation
A fixed permutation
A fixed permutation

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>D</td>
<td>F</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A fixed permutation
A fixed permutation

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>D</td>
<td>F</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>G</td>
</tr>
</tbody>
</table>

0 0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 1 0
A fixed permutation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A fixed permutation

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>D</td>
<td>F</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>G</td>
</tr>
</tbody>
</table>

0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1 0
0 0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0 0
A fixed permutation

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>D</td>
<td>F</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>G</td>
</tr>
</tbody>
</table>

0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 1 0
A fixed permutation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A fixed permutation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A fixed permutation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A fixed permutation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A fixed permutation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A fixed permutation is shown in the table with '1's indicating the fixed positions and '0's indicating the positions that change.
SINGLE PEAKED PREFERENCES

Strategyproofness

The Theory of Committees and Elections.
Black, D., New York: Cambridge University Press, 1958
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: D beats all other candidates in pairwise elections.
Claim: Choosing D also leaves nobody with any incentive to manipulate.
Claim: Choosing D also leaves nobody with any incentive to manipulate.
Claim: Choosing D also leaves nobody with any incentive to manipulate.
Claim: Choosing D also leaves nobody with any incentive to manipulate.
Claim: Choosing D also leaves nobody with any incentive to manipulate.
Claim: Choosing D also leaves nobody with any incentive to manipulate.
SINGLE PEAKED PREFERENCES

Preference Elicitation

When the number of candidates is large, soliciting a full ranking can be a little unmanageable.
When the number of candidates is large, soliciting a full ranking can be a little unmanageable.

Voters typically find it easier to answer “comparison queries”:

Would you rather hang out over coffee or join me for a concert?
How many such queries to do we need to make to be able to reconstruct the full preference?
How many such queries to do we need to make to be able to reconstruct the full preference?

Just like the weighing scale puzzles, except you can only compare two single options at a time.
Using a “merge sort” like idea, \(O(m \log m)\) comparisons are enough.
Using a “merge sort” like idea, $O(m \log m)$ comparisons are enough.

Recursively order half the alternatives.
Using a “merge sort” like idea, $O(m \log m)$ comparisons are enough.

Recursively order half the alternatives.
Using a “merge sort” like idea, $O(m \log m)$ comparisons are enough.

Merge the two lists with a linear number of queries.
...and we can do better if the preferences are single-peaked!
...and we can do better if the preferences are single-peaked!

(i) Identify the peak: use binary search.
[Better query complexities for elicitation.]

(i) Identify the peak: use binary search.
(i) Identify the peak: use binary search.
(i) Identify the peak: use binary search.

this signals that the peak is to the right.
[Better query complexities for elicitation.]

(i) Identify the peak: use binary search.
[Better query complexities for elicitation.]

(i) Identify the peak: use binary search.
(i) Identify the peak: use binary search.

this signals that the peak is to the left.

Better query complexities for elicitation.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.

[Better query complexities for elicitation.]
[Better query complexities for elicitation.]

(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.
(ii) Once we know the peak, the rest is $O(m)$ queries.

[Better query complexities for elicitation.]
[Better query complexities for elicitation.]
(i) Identify the peak: use binary search ($O(\log m)$ queries).

(ii) Once we know the peak, the rest is $O(m)$ queries.
SINGLE CROSSING PREFERENCES

definition, recognition and Condorcet winners
SINGLE CROSSING PREFERENCES

Definition
A profile is **single-crossing** if it admits an ordering of the voters such that for every pair of candidates (a,b), either:

a) all voters who prefer a over b appear before all voters who prefer b over a, or,

b) all voters who prefer a over b appear after all voters who prefer b over a, or,
The notion is popular for several reasons:

- No Condorcet Cycles.
- Identifiable in polynomial time.
- Reasonable (?) model of actual elections.
SINGLE CROSSING PREFERENCES

A Characterization of the Single-Crossing Domain
Bredereck, Chen and Woeginger, Social Choice and Welfare, 2013
Recognising if a given profile is single-crossing with respect to some preference ordering.

Checking if a 0/1 matrix has the consecutive-ones property.
SINGLE CROSSING PREFERENCES

No Condorcet Cycles
For any pair of candidates, the opinion of the middle voter is also the majority opinion.
Voters

Candidates
Voters

Candidates
dissatisfaction of voter $v =$
rank of best candidate in the committee in his vote
dissatisfaction of voter $v =\,$
rank of best candidate in the committee in his vote
On single-crossing profiles, optimal CC solutions exhibit a “contiguous blocks property”.

dissatisfaction of voter $v =$ rank of best candidate in the committee in his vote
On single-crossing profiles, optimal CC solutions exhibit a “contiguous blocks property”.

Voters

Candidates

dissatisfaction of voter $v =$ rank of best candidate in the committee in his vote
On single-crossing profiles, optimal CC solutions exhibit a “contiguous blocks property”.

Voters

Candidates

dissatisfaction of voter $v = $ rank of best candidate in the committee in his vote
CONCLUDING REMARKS

nearly structured preferences, dichotomous preferences
The single-peaked and single-crossing domains have been generalised to notions of **single-peaked and single-crossing on trees**. The generalised domains continue to exhibit many of the nice properties we saw today.

The single-peaked and single-crossing domains have been
generalised to notions of single-peaked-width and single-
crossing-width.

Here, it is common that algorithms that work in the single-
peaked or single-crossing settings can be generalised to
profiles of width w at an expense that is exponential in w.

Kemeny Elections with Bounded Single-peaked or Single-crossing Width,
Cornaz, Galand, and Spanjaard, IJCAI 2013
Profiles that are “close” to being single-peaked or single-crossing (closeness measured usually in terms of candidate or voter deletion) have also been studied.

It’s typically NP-complete to determine the optimal distance, but FPT and approximation algorithms are known.

On Detecting Nearly Structured Preference Profiles
Elkind and Lackner, AAAI 2014

Computational aspects of nearly single-peaked electorates,
Erdélyi, Lackner, and Pfandler, AAAI 2013

Are There Any Nicely Structured Preference Profiles Nearby?
Bredereck, Chen, and Woeginger, AAAI 2013
<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(V_{\text{DE}})</th>
<th>(C_{\text{DE}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k < n/2)</td>
<td>(k \geq n/2)</td>
<td></td>
</tr>
<tr>
<td>Single-peaked / Single-caved</td>
<td>(O^*(1.28^k))</td>
<td>(O^*(2.08^k))</td>
</tr>
<tr>
<td>Single-crossing</td>
<td>(P)</td>
<td>(P)</td>
</tr>
<tr>
<td>Best-/Medium-/Worst-restricted</td>
<td>(O^*(1.28^k))</td>
<td>(O^*(2.08^k))</td>
</tr>
<tr>
<td>Value-restricted</td>
<td>(O^*(2.08^k))</td>
<td>(O^*(2.08^k))</td>
</tr>
<tr>
<td>Group-separable</td>
<td>(O^*(1.28^k))</td>
<td>(O^*(2.08^k))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(V_{\text{DE}})</th>
<th>(C_{\text{DE}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-peaked / Single-caved</td>
<td>2</td>
<td>(P)</td>
</tr>
<tr>
<td>Single-crossing</td>
<td>(P)</td>
<td>6</td>
</tr>
<tr>
<td>Best-/Medium-/Worst-restricted</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Value-restricted</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Group-separable</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Summary from:
While the domain restrictions we saw today apply to votes given as linear orders, similar restrictions have also been studied in the context of votes that are given by approval ballots.

As was the case here, there are close connections with COP and many hard problems become easy on these structured (dichotomous) profiles.
Euclidean preferences capture settings where voters and alternatives can be identified with points in the Euclidean space, with voters’ preferences driven by distances to alternatives.

Psychological scaling without a unit of measurement, *Coombs; Psychological review*, 1950
The Dark Side: Domain restrictions also have some side-effects: problems like manipulation, bribery, and so forth also become easy!

The Shield that Never Was: Societies with Single-Peaked Preferences are More Open to Manipulation and Control, Faliszewski et al; TARK 2009

THANK YOU!

The Handbook of Computational Social Choice, Brandt, Conitzer, Endriss, Lang and Procaccia; 2016