Array noncomputability for left-c.e. reals and not totally ω-c.e. degrees

Nadine Losert
Joint work with Klaus Ambos-Spies, Nan Fang, Wolfgang Merkle and Martin Monath

Heidelberg University

Aspects of Computation, IMS Singapore, 4 September 2017
1. Review: Array noncomputability
2. Array noncomputability for left-c.e. sets
3. Universally l.c.e.-a.n.c. sets
4. Further Examples
A sequence $\mathcal{F} = \{F_n\}_{n\geq 0}$ of finite sets is a **very strong array** (v.s.a.) if

(i) there is a computable function f such that $f(n)$ is the canonical index of F_n,

(ii) $F_m \cap F_n = \emptyset$ if $m \neq n$, and

(iii) $0 < |F_n| < |F_{n+1}|$ for all $n \geq 0$.
Definition (Downey, Jockusch and Stob; Downey and Hirschfeldt)

A sequence $\mathcal{F} = \{F_n\}_{n \geq 0}$ of finite sets is a very strong array (v.s.a.) if

(i) there is a computable function f such that $f(n)$ is the canonical index of F_n,

(ii) $F_m \cap F_n = \emptyset$ if $m \neq n$, and

(iii) $0 < |F_n| < |F_{n+1}|$ for all $n \geq 0$.

Definition

Let $\mathcal{F} = \{F_n\}_{n \geq 0}$ be a v.s.a. and let A and B be any sets. A and B are \mathcal{F}-similar ($A \sim \mathcal{F} B$ for short) if

$$\exists \infty n \ (A \cap F_n = B \cap F_n).$$
Definition (Downey, Jockusch and Stob)

- Let $\mathcal{F} = \{F_n\}_{n \geq 0}$ be a v.s.a. A set A is \mathcal{F}-array noncomputable (\mathcal{F}-a.n.c. for short) if A is c.e. and, for any c.e. set B, A and B are \mathcal{F}-similar.

- A set A is array noncomputable (a.n.c. for short) if A is \mathcal{F}-a.n.c. for some v.s.a. \mathcal{F}.

- A c.e. degree a is array noncomputable (a.n.c. for short) if there is an a.n.c. set A in a; and a is array computable otherwise.
The requirement to make a set a.n.c. may be weakened as follows.

Proposition (Downey, Jockusch and Stob)

Let \(\mathcal{F} = \{ F_n \}_{n \geq 0} \) be a v.s.a. and let \(A \) be a c.e. set such that, for any c.e. set \(B \), the following holds.

\[
\exists n \ (A \cap F_n = B \cap F_n).
\]

Then \(A \) is \(\mathcal{F} \)-a.n.c.
The requirement to make a set a.n.c. may be weakened as follows.

Proposition (Downey, Jockusch and Stob)

Let $\mathcal{F} = \{F_n\}_{n \geq 0}$ be a v.s.a. and let A be a c.e. set such that, for any c.e. set B, the following holds.

$$\exists n (A \cap F_n = B \cap F_n).$$

Then A is \mathcal{F}-a.n.c.

Array noncomputability of a wtt-degree does not depend on the v.s.a. chosen and is closed upwards.

Proposition (Downey, Jockusch and Stob)

Given very strong arrays \mathcal{F} and \mathcal{F}' and c.e. sets A and \hat{B} such that A is \mathcal{F}-a.n.c. and $A \leq_{wtt} \hat{B}$, there is an \mathcal{F}'-a.n.c. set B such that $B =_{wtt} \hat{B}$.
Definition

A function f is h-c.e. for a function h if there is a computable approximation $\{f_s\}_{s \geq 0}$ to f such that the following holds for all x.

$$|\{s : f_{s+1}(x) \neq f_s(x)\}| \leq h(x).$$

Lemma (Downey, Jockusch and Stob)

The following are equivalent for a degree a.

(i) a is a.n.c.

(ii) For every computable function h, there is a function $f \leq_T a$ that is not h-c.e.

(iii) For any function $g \leq_{wtt} \emptyset'$, there is a function $f \leq_T a$ that is not dominated by g.
Definition

A degree a is non-low_2 if for any function $g \leq_T \emptyset'$, there is a function $f \leq_T a$ that is not dominated by g.
A degree \(a \) is *non-low* \(_2\) if for any function \(g \leq_T \emptyset' \), there is a function \(f \leq_T a \) that is not dominated by \(g \).

It follows directly that any non-low \(_2\) degree is a.n.c. However, it has been shown that there are low degrees which are a.n.c. As we have just seen, the a.n.c. wtt-degrees are closed upwards.
Definition (Downey, Greenberg and Weber)

A degree \(a \) is *totally* \(\omega \)-c.e. if for any function \(f \leq_T a \), there is a computable function \(h \) such that \(f \) is \(h \)-c.e.

In the following, we are interested in the *not* totally \(\omega \)-c.e. Turing degrees. It follows from the definition that those are closed upwards. Furthermore, the not totally \(\omega \)-c.e. Turing degrees are properly contained in the a.n.c. Turing degrees. It has been shown by Downey, Greenberg and Weber that the not totally \(\omega \)-c.e. Turing degrees are definable (they bound a critical triple).
Theorem (Barmpalias, Downey and Greenberg)

A degree a is a.n.c. if and only if there is a left-c.e. set $A \in a$ that is not cl-reducible to any random left-c.e. set.
Theorem (Barmpalias, Downey and Greenberg)

A degree a is a.n.c. if and only if there is a left-c.e. set $A \in a$ that is not cl-reducible to any random left-c.e. set.

Theorem (Ambos-Spies, Losert and Monath)

A degree a is not totally ω-c.e. if and only if there is a left-c.e. set $A \in a$ that is not cl-reducible to any complex left-c.e. set.
When studying properties of left-c.e. sets within the a.n.c. degrees, it is convenient to consider array noncomputability for left-c.e. sets. This cannot be done in the “most obvious” way, as for any v.s.a. \mathcal{F}, there is no left-c.e. set which is \mathcal{F}-similar to all left-c.e. sets.

However, we may consider sets that are “locally” left-c.e. with respect to a given v.s.a. \mathcal{F}. Then, there are indeed left-c.e. set which are \mathcal{F}-similar to any such set.

We will see that the Turing degrees of such sets coincide with the a.n.c. degrees.
Definition

Let $\mathcal{F} = \{F_n\}_{n \geq 0}$ be a very strong array. A computable approximation $\{A_s\}_{s \geq 0}$ of A is \mathcal{F}-compatible if, for any $n, s \geq 0$,

$$A_s \cap F_n \leq_{\text{lex}} A_{s+1} \cap F_n$$

and, for any $x \notin \bigcup_{n \geq 0} F_n$ and any $s \geq 0$, $A_s(x) \leq A_{s+1}(x)$.

A set A is \mathcal{F}-compatibly left-c.e. (\mathcal{F}-left-c.e. or \mathcal{F}-l.c.e.) if there is an \mathcal{F}-compatible approximation $\{A_s\}_{s \geq 0}$ of A.
Definition

- Let $\mathcal{F} = \{F_n\}_{n \geq 0}$ be a very strong array. A set A is \mathcal{F}-array noncomputable for the \mathcal{F}-l.c.e. sets (\mathcal{F}-l.c.e.-a.n.c.) if A is l.c.e. and, for all \mathcal{F}-l.c.e. sets B, $A \sim_{\mathcal{F}} B$.

- A set A is array noncomputable for the left-c.e. sets (l.c.e.-a.n.c.) if A is \mathcal{F}-l.c.e.-a.n.c. for some v.s.a. \mathcal{F}.

- A degree \mathbf{a} is l.c.e.-a.n.c. if it contains an l.c.e.-a.n.c. set.
Theorem

Let $\mathcal{F} = \{ F_n \}_{n \geq 0}$ be a v.s.a. Then the following hold.

- For any l.c.e.-a.n.c. set A there is an \mathcal{F}-a.n.c. set B such that $A =_{\text{wtt}} B$.
- For any a.n.c. set A there is an \mathcal{F}-l.c.e.-a.n.c. set B such that $A =_{\text{wtt}} B$.

As the a.n.c. wtt-degrees are closed upwards, this implies that the same holds for the l.c.e.-a.n.c. wtt-degrees.
As shown by Downey, Jockusch and Stob, no c.e. set can be \mathcal{F}-a.n.c. for every v.s.a. \mathcal{F}. For the case of l.c.e.-array noncomputability, however, such universal sets do exist.
As shown by Downey, Jockusch and Stob, no c.e. set can be \mathcal{F}-a.n.c. for every v.s.a. \mathcal{F}. For the case of l.c.e.-array noncomputability, however, such universal sets do exist.

Definition

- An l.c.e. set A is *universally l.c.e.-a.n.c.* if A is \mathcal{F}-l.c.e.-a.n.c. for all very strong arrays \mathcal{F}, i.e., if, for any v.s.a. \mathcal{F} and any \mathcal{F}-l.c.e. set B, A is \mathcal{F}-similar to B.
- A degree is *universally l.c.e.-a.n.c.* if it contains a universally l.c.e.-a.n.c. set.
As shown by Downey, Jockusch and Stob, no c.e. set can be \mathcal{F}-a.n.c. for every v.s.a. \mathcal{F}. For the case of l.c.e.-array noncomputability, however, such universal sets do exist.

Definition

- An l.c.e. set A is *universally l.c.e.-a.n.c.* if A is \mathcal{F}-l.c.e.-a.n.c. for all very strong arrays \mathcal{F}, i.e., if, for any v.s.a. \mathcal{F} and any \mathcal{F}-l.c.e. set B, A is \mathcal{F}-similar to B.
- A degree is *universally l.c.e.-a.n.c.* if it contains a universally l.c.e.-a.n.c. set.

It turns out that the universally l.c.e.-a.n.c. Turing degrees coincide with the not totally ω-c.e. Turing degrees.

Theorem

A Turing degree \mathbf{a} is not totally ω-c.e. if and only if it is universally l.c.e.-a.n.c.
Recall that the a.n.c. wtt-degrees are closed upwards. Furthermore, by coincidence with the not totally ω-c.e. degrees, the universally l.c.e.-a.n.c. Turing degrees are closed upwards, too. This might lead one to conjecture that the universally l.c.e.-a.n.c. wtt-degrees are closed upwards as well. However, this is not the case. In fact, we have the following.

Theorem

No wtt-hard set is universally l.c.e.-a.n.c.
Recall that the a.n.c. wtt-degrees are closed upwards. Furthermore, by coincidence with the not totally \(\omega \)-c.e. degrees, the universally l.c.e.-a.n.c. Turing degrees are closed upwards, too. This might lead one to conjecture that the universally l.c.e.-a.n.c. wtt-degrees are closed upwards as well. However, this is not the case. In fact, we have the following.

Theorem

No wtt-hard set is universally l.c.e.-a.n.c.

Definition (Kanovich)

Let \(h \) be a computable order. A set \(A \) is *\(h \)-complex* if \(C(A \upharpoonright n) \geq h(n) \) for all \(n \). A set \(A \) is *complex* if \(A \) is \(h \)-complex for some computable order.
By a result of Kanovich, we may replace wtt-hard with complex.

Lemma

Let A be universally l.c.e.-a.n.c. Then, A is not complex.

By definition of universally l.c.e.-a.n.c. sets, it is enough to prove the following.

Lemma

Let h be a computable order. There is a v.s.a. $\mathcal{F} = \{F_n\}_{n \geq 0}$ such that any set A which is \mathcal{F}-similar to the empty set is not h-complex.
Definition

- For any function $f : \omega \to \omega$, an ML-test $\{U_n\}_{n \geq 0}$ is **f-bounded** (an f-test) if, for $n \geq 0$, $|U_n| \leq f(n)$.

- A set A is **f-Martin-Löf random** if A passes all f-tests.

- A set A is **computably-bounded random** (CB-random) if A is f-ML-random for all computable functions f.

Theorem (Downey, Brodhead, Ng)

Let a be a not totally ω-c.e. Turing degree. Then, $\exists a$ contains a set which is CB-random. Furthermore, there is a left-c.e. set $A \leq_T a$ which is CB-random.
Definition

- For any function $f : \omega \rightarrow \omega$, an ML-test $\{U_n\}_{n \geq 0}$ is f-bounded (an f-test) if, for $n \geq 0$, $|U_n| \leq f(n)$.
- A set A is f-Martin-Löf random if A passes all f-tests.
- A set A is computably-bounded random (CB-random) if A is f-ML-random for all computable functions f.

Theorem (Downey, Brodhead, Ng)

Let a be a not totally ω-c.e. Turing degree. Then, a contains a set which is CB-random. Furthermore, there is a left-c.e. set $A \leq_T a$ which is CB-random.
As we have seen, universally l.c.e.-a.n.c. sets are not complex, so they are not ML-random, either. However, they are CB-random.

Theorem

Any universally l.c.e.-a.n.c. set is CB-random.
As we have seen, universally l.c.e.-a.n.c. sets are not complex, so they are not ML-random, either. However, they are CB-random.

Theorem

Any universally l.c.e.-a.n.c. set is CB-random.

It is enough to show the following.

Lemma

Let f be a computable function. There is a v.s.a. $\mathcal{F} = \{F_n\}_{n \geq 0}$ such that any \mathcal{F}-l.c.e.-a.n.c. set A passes any f-ML-test.

Note that \mathcal{F} only depends on the function f but not on the particular f-bounded ML-test.
Theorem (Ambos-Spies, Losert and Monath)

If \(a \) is not totally \(\omega \)-c.e. then there is a left-c.e. set \(A \in a \) that is not cl-reducible to any complex left-c.e. set.
Theorem (Ambos-Spies, Losert and Monath)

If \(a \) is not totally \(\omega \)-c.e. then there is a left-c.e. set \(A \in a \) that is not cl-reducible to any complex left-c.e. set.

Again by Kanovich’s result, we may replace complex with wtt-hard. Moreover, we may replace cl-reducible with ibT-reducible in this context. By our result on universally l.c.e.-a.n.c. degrees, the theorem follows directly from the following lemma.

Lemma

If \(A \) is universally l.c.e.-a.n.c. then \(A \) is not ibT-reducible to any wtt-hard left-c.e. set.
By the following equivalence, this formulation of the theorem is tightly related to maximal pairs in the l.c.e. ibT-degrees.

Lemma

Let A be a left-c.e. set. The following are equivalent.

(i) A is not ibT-reducible to any wtt-hard left-c.e. set.

(ii) For any infinite computable set D there is a computably enumerable subset B of D such that (A, B) is an ibT-maximal pair in the left-c.e. sets.
Yu and Ding have shown that there exists a maximal pair in the left-c.e. ibT-degrees. This result has been extended in various directions. E.g., Fan has shown that there is a maximal pair in the left-c.e. ibT-degrees such that one half is c.e. In fact, by a result of Fan and Yu, every left-c.e. set is half of a maximal pair. However, as shown by Downey and Hirschfeldt, we cannot make both halves c.e.
Yu and Ding have shown that there exists a maximal pair in the left-c.e. ibT-degrees. This result has been extended in various directions. E.g., Fan has shown that there is a maximal pair in the left-c.e. ibT-degrees such that one half is c.e. In fact, by a result of Fan and Yu, every left-c.e. set is half of a maximal pair. However, as shown by Downey and Hirschfeldt, we cannot make both halves c.e.

In order to get our result it suffices to prove the following lemma extending Fan’s result in two directions.

Lemma

Let A be a universally l.c.e.-a.n.c. set and let D be any infinite computable set. There is a c.e. set $B \subseteq D$ such that (A, B) is an ibT-maximal pair in the left-c.e. sets.
By analyzing and slightly changing Fan’s construction, we obtain the following which implies the above lemma.

Lemma

Let D be an infinite computable set. There is a computable function l such that the following hold. For any ibT-functionals $\hat{\Phi}$ and $\hat{\Psi}$, any left-c.e. set V and any number $a \geq 0$, there are uniformly (in $\hat{\Phi}$, $\hat{\Psi}$, V and a) left-c.e. reals $A_{a,\hat{\Phi},\hat{\Psi},V} \subseteq [a, a + l(a)]$ and uniformly (in $\hat{\Phi}$, $\hat{\Psi}$, V and a) c.e. sets $B_{a,\hat{\Phi},\hat{\Psi},V} \subseteq [a, a + l(a)] \cap D$ such that the following holds.

$$\exists x \in [a, a + l(a)] (A_{a,\hat{\Phi},\hat{\Psi},V}(x) \neq \hat{\Phi}^V(x) \text{ or } B_{a,\hat{\Phi},\hat{\Psi},V}(x) \neq \hat{\Psi}^V(x)).$$
Thank you!