Computability and model-theoretic aspects of families of sets and its generalizations

Kalimullin I.Sh.

Kazan Federal University
e-mail:ikalimul@gmail.com

Aspects of Computation, Singapore, 2017
in celebration of the research work of Professor Rod Downey
Wehner’s family

Theorem (Wehner, 1999). The family

\[\mathcal{W} = \{ \{n\} \oplus F : F \text{ is finite & } F \neq W_n \} \]

is (uniformly) c.e. in a degree \(x \) if and only if \(x > 0 \).
Wehner’s family

Theorem (Wehner, 1999). The family

\[\mathcal{W} = \{ \{n\} \oplus F : F \text{ is finite} \& F \neq W_n \} \]

is (uniformly) c.e. in a degree \(x \) if and only if \(x > 0 \).

Corollary. There is a countable algebraic structure \(\mathcal{A} \) s.t. \(\mathcal{A} \) has an \(x \)-computable structure if and only if \(x > 0 \).
Jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

$$A \text{ has an } x'-\text{comp. copy } \iff F(A) \text{ has an } x\text{-comp. copy.}$$
Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

A has an x'-comp. copy $\iff F(A)$ has an x-comp. copy.

Corollary. For every $n \in \omega$ there is a countable algebraic structure A s.t. A has an x-computable structure if and only if $x^{(n)} > 0^{(n)}$.

Kalimullin I.Sh.
Computability and model-theoretic aspects of families
Jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor \(F \) s.t.

\[
\mathcal{A} \text{ has an } x'-\text{comp. copy } \iff F(\mathcal{A}) \text{ has an } x\text{-comp. copy.}
\]

Corollary. For every \(n \in \omega \) there is a countable algebraic structure \(\mathcal{A} \) s.t. \(\mathcal{A} \) has an \(x \)-computable structure if and only if \(x^{(n)} > 0^{(n)} \).

Proof. Let \(\mathcal{B} \) has an \(x \)-computable copy iff \(x > 0^{(n)} \).
Jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

\[\mathcal{A} \text{ has an } x\text{'-comp. copy } \iff F(\mathcal{A}) \text{ has an } x\text{-comp. copy.} \]

Corollary. For every $n \in \omega$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an x-computable structure if and only if $x^{(n)} > 0^{(n)}$.

Proof. Let \mathcal{B} has an x-computable copy iff $x > 0^{(n)}$. Then $\mathcal{A} = F^n(\mathcal{B})$.
Iterated jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals \(\alpha \), i.e. functors \(F^{(\alpha)} \) s.t.

\[
A \text{ has an } x^{(\alpha)}\text{-comp. copy } \iff F^{(\alpha)}(A) \text{ has an } x\text{-comp. copy.}
\]
Iterated jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α, i.e. functors $F^{(\alpha)}$ s.t.

\mathcal{A} has an $x^{(\alpha)}$-comp. copy $\iff F^{(\alpha)}(\mathcal{A})$ has an x-comp. copy.

Corollary. For every successive $\alpha \in \omega_1^{CK}$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an x-computable structure if and only if $x^{(\alpha)} > 0^{(\alpha)}$.
Iterated jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α, i.e. functors $F^{(\alpha)}$ s.t.

A has an $x^{(\alpha)}$-comp. copy $\iff F^{(\alpha)}(A)$ has an x-comp. copy.

Corollary. For every successive $\alpha \in \omega_1^{CK}$ there is a countable algebraic structure A s.t. A has an x-computable structure if and only if $x^{(\alpha)} > 0^{(\alpha)}$.

Proof. Let B has an x-computable copy iff $x > 0^{(\alpha)}$.
Iterated jump inversions

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α, i.e. functors $F^{(\alpha)}$ s.t.

\[A \text{ has an } x^{(\alpha)}\text{-comp. copy} \iff F^{(\alpha)}(A) \text{ has an } x\text{-comp. copy}. \]

Corollary. For every successive $\alpha \in \omega_1^{CK}$ there is a countable algebraic structure A s.t. A has an x-computable structure if and only if $x^{(\alpha)} > 0^{(\alpha)}$.

Proof. Let B has an x-computable copy iff $x > 0^{(\alpha)}$. Then $A = F^{(\alpha)}(B)$.

Kalimullin I.Sh. Computability and model-theoretic aspects of families
JUMP INVERSIONS AND FAMILIES

INFINITELY ITERATED JUMP INVERSIONS

LEAST JUMP INVERSIONS

Jump inversion for families

Question. Are there jump inversion functors for families? Are there families which are uniformly x-c.e. if and only if $x^{(\alpha)} > 0^{(\alpha)}$?
Jump inversion for families

Question. Are there jump inversion functors for families? Are there families which are uniformly x-c.e. if and only if $x^{(\alpha)} > 0^{(\alpha)}$?

Answer: Only for $\alpha = 0$ and $\alpha = 1$ (K., Faizrahmanov, 2015).
The family enumerable in non-low₁ degrees

Theorem. (Andrews, Cai, K, Lempp, Miller, Montalban, 2016). Let $\emptyset' \equiv_T \delta \in \omega^\omega$ such that the set

$$C = \{ \sigma \in \omega^{<\omega} \mid \sigma \not\subseteq \delta \}$$

is c.e. Then the family

$$\mathcal{V} = \{ \{n\} \oplus (C \cup F) \mid F \text{ is finite and } F \neq W_n^\delta \}$$

is x-c.e. iff $x \not\leq 0'$.
The family enumerable in non-low₁ degrees

Theorem (K., Faizrahmanov, 2015). Let $\emptyset' \equiv_T \delta \in \omega^\omega$ such that

the set

\[C = \{ \sigma \in \omega^{<\omega} | \sigma \not\subseteq \delta \} \]

is c.e. Then the family

\[\mathcal{V} = \{ \{ n \} \oplus (C \cup F) | F \text{ is cofinite and } \overline{F} \neq W_n^\delta \} \]

is x-c.e. iff $x' > 0'$.
The case \(\alpha = 2 \)

Theorem. (Faizrahmanov, K.) There is no family \(\mathcal{F} \) which is \(x \)-c.e. iff \(x'' > 0'' \).
The case $\alpha = 2$

Theorem. (Faizrahmanov, K.) There is no family \mathcal{F} which is x-c.e. iff $x'' > 0''$.

Proof. Let X be a low$_3$ c.e. set which is not low$_2$.
The case $\alpha = 2$

Theorem. (Faizrahmanov, K.) There is no family \mathcal{F} which is x-c.e. iff $x'' > 0''$.

Proof. Let X be a low$_3$ c.e. set which is not low$_2$. Then the index set $\{e : \Phi^X_e \text{ is non-low}_2\}$ is $(\Pi^X_5 = \Pi_5)$-complete.
The case \(\alpha = 2 \)

Theorem. (Faizrahmanov, K.) There is no family \(\mathcal{F} \) which is \(x \)-c.e. iff \(x'' > 0'' \).

Proof. Let \(X \) be a low\(_3\) c.e. set which is not low\(_2\). Then the index set \(\{ e : \Phi^X_e \text{ is non-low}_2 \} \) is \((\Pi^X_5 = \Pi_5) \)-complete. But if \(\mathcal{F} \) is \(X \)-c.e. then the index set \(\{ e : \mathcal{F} \text{ is } \Phi^X_e \text{-c.e.} \} \) is \(\Sigma^X_5 = \Sigma_5 \).
Definition. A 0-family is any subset of ω.
Definition. A 0-family is any subset of ω.

An n-family, $0 < n < \omega$, is a countable set of m-families, $m < n$.
Generalizations of families for jump inversions

Definition. A **0-family** is any subset of ω.

An **n-family**, $0 < n < \omega$, is a countable set of m-families, $m < n$.

An n-family \mathcal{U} is **x-c.e.** if the m-families $\mathcal{V} \in \mathcal{U}$, $m < n$, are uniformly x-c.e.
Definition. A 0-family is any subset of ω.

An n-family, $0 < n < \omega$, is a countable set of m-families, $m < n$. An n-family \mathcal{U} is x-c.e. if the m-families $\mathcal{V} \in \mathcal{U}$, $m < n$, are uniformly x-c.e.
Definition. A 0-family is any subset of ω.
An n-family, 0 < n < ω, is a countable set of m-families, m < n.
An n-family \(\mathcal{U} \) is \(x \)-c.e. if the m-families \(\mathcal{V} \in \mathcal{U}, m < n \), are uniformly \(x \)-c.e.

Observation. Every n-family \(\mathcal{U} \) can be coded into a structure \(\mathcal{G}_\mathcal{U} \) such that \(\mathcal{U} \) is \(x \)-c.e. iff \(\mathcal{G}_\mathcal{U} \) has a \(x \)-computable copy.
Jump inversion for \(n \)-families

An \(n \)-family \(\mathcal{U} \) is \(x' \)-c.e. iff the \((n + 1)\)-family

\[
\mathcal{E}(\mathcal{U}) = \begin{cases}
\{\omega\} \cup \{\{x\} : x \in A\}, & \text{if } n = 0 \text{ and } \mathcal{U} = A \subseteq \omega, \\
\{\mathcal{E}(\mathcal{V}) : \mathcal{V} \in \mathcal{U}\}, & \text{if } n > 0,
\end{cases}
\]

is \(x \)-c.e.
Double jump inversion for \(n \)-families

An \(n \)-family \(\mathcal{U} \) is \(x'' \)-c.e. iff the \((n + 1)\)-family

\[
\mathcal{D}(\mathcal{U}) = \begin{cases}
\{\text{all finite sets}\} \cup \{\overline{x} : x \in A\}, & \text{if } n = 0 \text{ and } \mathcal{U} = A \subseteq \omega, \\
\{\mathcal{D}(\mathcal{V}) : \mathcal{V} \in \mathcal{U}\}, & \text{if } n > 0,
\end{cases}
\]

is \(x \)-c.e.
Double jump inversion for n-families

An n-family \mathcal{U} is x''-c.e. iff the $(n + 1)$-family

$$\mathcal{D}(\mathcal{U}) = \begin{cases}
\{\text{all finite sets}\} \cup \{\overline{x} : x \in A\}, & \text{if } n = 0 \text{ and } \mathcal{U} = A \subseteq \omega, \\
\{\mathcal{D}(\mathcal{V}) : \mathcal{V} \in \mathcal{U}\}, & \text{if } n > 0,
\end{cases}$$

is x-c.e.

Theorem (Faizrahmanov, K., 2015) For every $n \in \omega$ there are $(n + 1)$-families \mathcal{U}_n and \mathcal{V}_n such that

$$\mathcal{U}_n \text{ is } x\text{-c.e. } \iff x^{(2n)} > O^{(2n)}$$

and

$$\mathcal{V}_n \text{ is } x\text{-c.e. } \iff x^{(2n+1)} > O^{(2n+1)}.$$
Definition. A 0-family is any subset of ω.

An α-family, $0 < \alpha < \omega_1^{CK}$, is a countable set of β-families, $\beta < \alpha$.

An α-family \mathcal{U} is x-c.e. if the β-families $\mathcal{V} \in \mathcal{U}$, $\beta < \alpha$, are uniformly x-c.e.
Definition. A 0-family is any subset of ω.
An α-family, $0 < \alpha < \omega_1^{CK}$, is a countable set of β-families, $\beta < \alpha$.
An α-family \mathcal{U} is \mathbf{x}-c.e. if the β-families $\mathcal{V} \in \mathcal{U}$, $\beta < \alpha$, are uniformly \mathbf{x}-c.e.
Generalized families for infinitely iterated jump inversions

Definition. A 0-family is any subset of ω.
An α-family, $0 < \alpha < \omega_1^{CK}$, is a countable set of β-families, $\beta < \alpha$.
An α-family \mathcal{U} is \mathbf{x}-c.e. if the β-families $\mathcal{V} \in \mathcal{U}$, $\beta < \alpha$, are uniformly \mathbf{x}-c.e.

Observation. Every α-family \mathcal{U} can be coded into a structure $\mathcal{G}_\mathcal{U}$ such that \mathcal{U} is \mathbf{x}-c.e. iff $\mathcal{G}_\mathcal{U}$ has a \mathbf{x}-computable copy.
The \((\omega + 1)\)-jump inversion

Let \(\mathcal{E}^\omega(A)\) be the \((\omega + 1)\)-family containing all \(\omega\)-families in the form

\[
\{\mathcal{E}^n(L(n)) : n \in \omega\},
\]

where \(L : \omega \to 2^\omega\) is any function such that \(L(n)\) is finite for every \(n\) and beginning some \(n\) we have

\[
L(n) = L(n + 1) \subseteq A.
\]

Theorem. (Faizrahmanov, K., 2016) A set \(A\) is \(x^{(\omega + 1)}\)-c.e. iff the \((\omega + 1)\)-family \(\mathcal{E}^{\omega + 1}(A)\) is \(x\)-c.e.
The non-low\(\omega\) and non-low\(\omega+1\) degrees

Corollary (Faizrahmanov, K., 2016). There is an \((\omega + 2)\)-family \(\mathcal{U}\) such that

\[\mathcal{U} \text{ is } x\text{-c.e.} \iff x^{(\omega+1)} > 0^{(\omega+1)}. \]
The non-low\(_\omega\) and non-low\(_{\omega+1}\) degrees

Corollary (Faizrahmanov, K., 2016). There is an \((\omega + 2)\)-family \(U\) such that

\[U \text{ is } x\text{-c.e. } \iff x^{(\omega+1)} > 0^{(\omega+1)}. \]

Theorem (Faizrahmanov, K., 2016). There is an \((\omega + 1)\)-family \(U\) such that

\[U \text{ is } x\text{-c.e. } \iff x^{(\omega)} > 0^{(\omega)}. \]
The non-low$_\omega$ and non-low$_{\omega+1}$ degrees

Corollary (Faizrahmanov, K., 2016). There is an $(\omega + 2)$-family \mathcal{U} such that

$$\mathcal{U} \text{ is x-c.e. } \iff x^{(\omega+1)} > 0^{(\omega+1)}.$$

Theorem (Faizrahmanov, K., 2016). There is an $(\omega + 1)$-family \mathcal{U} such that

$$\mathcal{U} \text{ is x-c.e. } \iff x^{(\omega)} > 0^{(\omega)}.$$

Corollary. There is an algebraic structure \mathcal{A} such that

$\mathcal{A} \text{ has an x-comp. copy } \iff x^{(\omega)} > 0^{(\omega)}.$
No ω-jump inversions for structures
No ω-jump inversions for structures

Corollary. There is an algebraic structure \mathcal{A} such that

$$\mathcal{A} \text{ has an } x\text{-comp. copy } \iff x^{(\omega)} > 0^{(\omega)}.$$
Corollary. There is an algebraic structure \mathcal{A} such that

$$\mathcal{A} \text{ has an } x\text{-comp. copy } \iff x^{(\omega)} > 0^{(\omega)}.$$

Theorem. (Kach, K., Montalban, Soskov, 2012, unpublished). There is no algebraic structure \mathcal{A} such that

$$\mathcal{A} \text{ has an } x\text{-comp. copy } \iff x^{(\omega)} \geq a$$

if $a > 0^{(\omega)}$.
No ω-jump inversions for structures

Corollary. There is an algebraic structure \mathcal{A} such that

$$\mathcal{A} \text{ has an } x\text{-comp. copy } \iff x^{(\omega)} > 0^{(\omega)}.$$

Theorem. (Kach, K., Montalban, Soskov, 2012, unpublished). There is no algebraic structure \mathcal{A} such that

$$\mathcal{A} \text{ has an } x\text{-comp. copy } \iff x^{(\omega)} \geq a$$

if $a > 0^{(\omega)}$.

Theorem. (Soskov, 2013). There is a structure \mathcal{B} such that for no algebraic structure \mathcal{A} such that

$$(\exists x)[y = x^{(\omega)} \& \mathcal{A} \text{ has an } x\text{-comp. copy}]$$

$$\iff y \geq 0^{(\omega)} \& \mathcal{B} \text{ has an } y\text{-comp. copy.}$$
α-jump inversion

Theorem. (Faizrahmanov, K., 2016) For a set A and successive $\alpha < \omega_1^{CK}$ one can define an α-family $E^\alpha(A)$ such that A is $x^{(\alpha)}$-c.e. iff $E^\alpha(A)$ is x-c.e.
\(\alpha\)-jump inversion

Theorem. (Faizrahmanov, K., 2016) For a set \(A\) and successive \(\alpha < \omega_1^{CK}\) one can define an \(\alpha\)-family \(E^\alpha(A)\) such that \(A\) is \(x^{(\alpha)}\)-c.e. iff \(E^\alpha(A)\) is \(x\)-c.e.

Corollary (Faizrahmanov, K., 2016). For a successive \(\alpha < \omega_1^{CK}\) there is an \((\alpha + 1)\)-family \(U\) such that

\[U \text{ is } x\text{-c.e. } \iff x^{(\alpha)} > 0^{(\alpha)}.\]
\(\alpha \)-jump inversion

Theorem. (Faizrahmanov, K., 2016) For a set \(A \) and successive \(\alpha < \omega_1^{CK} \) one can define an \(\alpha \)-family \(E^\alpha(A) \) such that \(A \) is \(x^{(\alpha)} \)-c.e. iff \(E^\alpha(A) \) is \(x \)-c.e.

Corollary (Faizrahmanov, K., 2016). For a successive \(\alpha < \omega_1^{CK} \) there is an \((\alpha + 1) \)-family \(U \) such that
\[
U \text{ is } x \text{-c.e. } \iff x^{(\alpha)} > 0^{(\alpha)}.
\]

Theorem (Faizrahmanov, K., 2016). For a limit \(\alpha < \omega_1^{CK} \) there is an \((\alpha + 1) \)-family \(U \) such that
\[
U \text{ is } x \text{-c.e. } \iff x^{(\alpha)} > 0^{(\alpha)}.
\]
α-jump inversion

Theorem. (Faizrahmanov, K., 2016) For a set A and successive $\alpha < \omega_1^{CK}$ one can define an α-family $E^\alpha(A)$ such that A is $x^{(\alpha)}$-c.e. iff $E^\alpha(A)$ is x-c.e.

Corollary (Faizrahmanov, K., 2016). For a successive $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$-family U such that

\[U \text{ is } x\text{-c.e.} \iff x^{(\alpha)} > 0^{(\alpha)}. \]

Theorem (Faizrahmanov, K., 2016). For a limit $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$-family U such that

\[U \text{ is } x\text{-c.e.} \iff x^{(\alpha)} > 0^{(\alpha)}. \]

Corollary. For every $\alpha < \omega_1^{CK}$ there is an algebraic structure A such that

\[A \text{ has an } x\text{-comp. copy} \iff x^{(\alpha)} > 0^{(\alpha)}. \]
Least jump inversions

A \leq _\Sigma B \text{ means that } A \text{ is } \Sigma_{c1} \text{-interpretable in } B^{<\omega}.

\(A(\alpha) = (A, \text{all } \Sigma_{c\alpha} \text{-predicates}) \).

A countable structure \(B \) is a least \(\alpha \)-jump inversion for a countable structure \(A \) if \(A \leq _\Sigma X(\alpha) \iff B \leq _\Sigma X \) for every countable structure \(X \).

(Example). The family of all infinite c.e. sets is a least jump inversion for \(0'' \), but the family of all total computable functions is not.
Least jump inversions

- $A \leq_{\Sigma} B$ means that A is Σ^c_1-interpretable in $B^{<\omega}$.
Least jump inversions

- $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ means that \mathcal{A} is Σ^c_{1}-interpretable in $\mathcal{B}^{<\omega}$.
- $\mathcal{A}^{(\alpha)} = (\mathcal{A}, \text{all } \Sigma^c_{\alpha}\text{-predicates})$.
Least jump inversions

- \(A \leq_{\Sigma} B \) means that \(A \) is \(\Sigma^c_1 \)-interpretable in \(B^{<\omega} \).
- \(A^{(\alpha)} = (A, \text{all } \Sigma^c_\alpha \text{-predicates}) \).
- A countable structure \(B \) is a least \(\alpha \)-jump inversion for a countable structure \(A \) if

\[
A \leq_{\Sigma} \mathcal{X}^{(\alpha)} \iff B \leq_{\Sigma} \mathcal{X}
\]

for every countable structure \(\mathcal{X} \).
Least jump inversions

- $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ means that \mathcal{A} is Σ^c_1-interpretable in $\mathcal{B}^{<\omega}$.
- $\mathcal{A}^{(\alpha)} = (\mathcal{A}, \text{all } \Sigma^c_\alpha\text{-predicates})$.
- A countable structure \mathcal{B} is a least α-jump inversion for a countable structure \mathcal{A} if
 \[\mathcal{A} \leq_{\Sigma} \mathcal{X}^{(\alpha)} \iff \mathcal{B} \leq_{\Sigma} \mathcal{X} \]
 for every countable structure \mathcal{X}.
- (Example). The family of all infinite c.e. sets is a least jump inversion for $0''$, but the family of all total computable functions is not.
Existence of least jump inversions

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure \mathcal{A} there is a least jump inversion $\mathcal{A}^{(-\alpha)}$.
Existence of least jump inversions

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure A there is a least jump inversion $A^{(-\alpha)}$.

By the definition $A \leq \Sigma B$ implies $A^{(-\alpha)} \leq \Sigma B^{(-\alpha)}$.
Existence of least jump inversions

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure A there is a least jump inversion $A^{(-\alpha)}$.

By the definition $A \leq \Sigma B$ implies $A^{(-\alpha)} \leq \Sigma B^{(-\alpha)}$. By the construction $(A \oplus B)^{(-\alpha)} \leq \Sigma A^{(-\alpha)} \oplus B^{(-\alpha)}$.
Existence of least jump inversions

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure A there is a least jump inversion $A^{(-\alpha)}$.

By the definition $A \leq \Sigma B$ implies $A^{(-\alpha)} \leq \Sigma B^{(-\alpha)}$. By the construction $(A \oplus B)^{(-\alpha)} \leq \Sigma A^{(-\alpha)} \oplus B^{(-\alpha)}$. Thus,
Existence of least jump inversions

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure A there is a least jump inversion $A^{(-\alpha)}$.

By the definition $A \leq_{\Sigma} B$ implies $A^{(-\alpha)} \leq_{\Sigma} B^{(-\alpha)}$. By the construction $(A \oplus B)^{(-\alpha)} \leq_{\Sigma} A^{(-\alpha)} \oplus B^{(-\alpha)}$. Thus,

Corollary. $(A \oplus B)^{(-\alpha)} \equiv_{\Sigma} A^{(-\alpha)} \oplus B^{(-\alpha)}$.
Least jump inversion for generalized families

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set A the family $E(A) = \{\omega\} \cup \{\{x\} : x \in A\}$ is the least jump inversion for A. Thus, the least jump inversion for an β-family is an $(1 + \beta)$-family.
Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set A the family $\mathcal{E}(A) = \{\omega\} \cup \{\{x\} : x \in A\}$ is the least jump inversion for A. Thus, the least jump inversion for an β-family is an $(1 + \beta)$-family.

Remark. For a set A the family $\mathcal{D}(A) = \{\text{all finite sets}\} \cup \{\{x\} : x \in A\}$ is not the least double jump inversion for A. Moreover, the 2-family $\mathcal{E}(\mathcal{E}(A))$ is not Σ-equivalent to a 1-family.
Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set A the family $E(A) = \{\omega\} \cup \{\{x\} : x \in A\}$ is the least jump inversion for A. Thus, the least jump inversion for an β-family is an $(1 + \beta)$-family.

Remark. For a set A the family $D(A) = \{\text{all finite sets}\} \cup \{\{x\} : x \in A\}$ is not the least double jump inversion for A. Moreover, the 2-family $E(E(A))$ is not Σ-equivalent to a 1-family.

Theorem. For a set A and successive $\alpha < \omega_1^{CK}$ the α-family $E^\alpha(A)$ is the least α-jump inversion for A. Thus, the least α-jump inversion for an β-family is an $(\alpha + \beta)$-family.