Reverse Mathematics of Model Theory and First-Order Principles
Denis R. Hirschfeldt — University of Chicago
IMS, National University of Singapore, September 2017

Aspects of Computation, in Celebration of Rod Downey
Induction and bounding

$I\Sigma^0_n$ is induction for Σ^0_n formulas.

The base theory RCA_0 is essentially computable mathematics with induction limited to $I\Sigma^0_1$.
Induction and bounding

$I\Sigma^0_n$ is induction for Σ^0_n formulas.

The base theory RCA_0 is essentially computable mathematics with induction limited to $I\Sigma^0_1$.

All our implications are over RCA_0.
Induction and bounding

$\textbf{I}\Sigma_n^0$ is induction for Σ_n^0 formulas.

The base theory RCA_0 is essentially computable mathematics with induction limited to $\textbf{I}\Sigma_1^0$.

All our implications are over RCA_0.

$\textbf{B}\Sigma_n^0$ is bounding for Σ_n^0 formulas:

$$\forall i < n \exists x \varphi(i, x) \rightarrow \exists b \forall i < n \exists x < b \varphi(i, x).$$
Induction and bounding

$I\Sigma^0_n$ is induction for Σ^0_n formulas.

The base theory RCA_0 is essentially computable mathematics with induction limited to $I\Sigma^0_1$.

All our implications are over RCA_0.

$B\Sigma^0_n$ is bounding for Σ^0_n formulas:

$$\forall i < n \exists x \varphi(i, x) \rightarrow \exists b \forall i < n \exists x < b \varphi(i, x).$$

Over RCA_0, $B\Sigma^0_n$ is strictly between $I\Sigma^0_{n-1}$ and $I\Sigma^0_n$.

Thm (Slaman). $B\Sigma^0_n$ is equivalent to $I\Delta^0_n$.

In particular, $\text{RCA}_0 \not\models B\Sigma^0_2$.
Theories, structures, and trees

T will denote a countable, complete, consistent theory.

\mathcal{M} will denote a countable structure.
Theories, structures, and trees

T will denote a countable, complete, consistent theory.

M will denote a countable structure.

A tree will be a subset of $2^{<\omega}$ closed under initial segments.
Theories, structures, and trees

T will denote a countable, complete, consistent theory.

\mathcal{M} will denote a countable structure.

A tree will be a subset of $2^{<\omega}$ closed under initial segments.

We identify \mathcal{M} with its elementary diagram.

\mathcal{M} is **decidable** if its elementary diagram is computable.
Theories, structures, and trees

T will denote a countable, complete, consistent theory.

\mathcal{M} will denote a countable structure.

A tree will be a subset of $2^{<\omega}$ closed under initial segments.

We identify \mathcal{M} with its elementary diagram.

\mathcal{M} is **decidable** if its elementary diagram is computable.

RCA$_0$ proves that every T has a model.

But what about models with special properties?

In particular ones determined by their type spectra.
\(\mathcal{M} \) is **atomic** if all types it realizes are principal.
The Atomic Model Theorem

\mathcal{M} is \textbf{atomic} if all types it realizes are principal.

All (countable) atomic models of T are isomorphic.
The Atomic Model Theorem

\(\mathcal{M} \) is **atomic** if all types it realizes are principal.

All (countable) atomic models of \(T \) are isomorphic.

An **atom** of \(T \) is a formula contained in exactly one type of \(T \).

\(T \) is **atomic** if every formula consistent with \(T \) is implied by an atom of \(T \) (or equivalently, is contained in a principal type of \(T \)).
The Atomic Model Theorem

\(M \) is **atomic** if all types it realizes are principal.

All (countable) atomic models of \(T \) are isomorphic.

An **atom** of \(T \) is a formula contained in exactly one type of \(T \).

\(T \) is **atomic** if every formula consistent with \(T \) is implied by an atom of \(T \) (or equivalently, is contained in a principal type of \(T \)).

\(\text{RCA}_0 \) proves that if \(T \) has an atomic model then it is atomic.
The Atomic Model Theorem

M is **atomic** if all types it realizes are principal.

All (countable) atomic models of T are isomorphic.

An **atom** of T is a formula contained in exactly one type of T.

T is **atomic** if every formula consistent with T is implied by an atom of T (or equivalently, is contained in a principal type of T).

RCA$_0$ proves that if T has an atomic model then it is atomic.

Atomic Model Theorem (AMT). If T is atomic then it has an atomic model.
Thm (Goncharov and Nurtazin; Harrington). An atomic T has a decidable atomic model iff there is a computable listing of the principal types of T.

By considering trees of types and coding trees into theories, AMT can be restated as: If V is a tree with isolated paths dense, then there is a listing of the isolated paths of V. Well, that is sort of true.
The combinatorial content of AMT

Thm (Goncharov and Nurtazin; Harrington). An atomic T has a decidable atomic model iff there is a computable listing of the principal types of T.

Thm (Hirschfeldt, Shore, and Slaman). $\text{RCA}_0 \vdash$ An atomic T has an atomic model iff there is a listing of the principal types of T.
The combinatorial content of AMT

Thm (Goncharov and Nurtazin; Harrington). An atomic T has a decidable atomic model iff there is a computable listing of the principal types of T.

Thm (Hirschfeldt, Shore, and Slaman). $\text{RCA}_0 \vdash$ An atomic T has an atomic model iff there is a listing of the principal types of T.

So AMT can be restated as: If T is atomic then there is a listing of the principal types of T.
The combinatorial content of AMT

Thm (Goncharov and Nurtazin; Harrington). An atomic T has a decidable atomic model iff there is a computable listing of the principal types of T.

Thm (Hirschfeldt, Shore, and Slaman). $\text{RCA}_0 \vdash$ An atomic T has an atomic model iff there is a listing of the principal types of T.

So AMT can be restated as: If T is atomic then there is a listing of the principal types of T.

By considering trees of types and coding trees into theories, AMT can be restated as: If V is a tree with isolated paths dense, then there is a listing of the isolated paths of V.

Well, that is sort of true.
The combinatorial content of AMT

Thm (Goncharov and Nurtazin; Harrington). An atomic T has a decidable atomic model iff there is a computable listing of the principal types of T.

Thm (Hirschfeldt, Shore, and Slaman). $\text{RCA}_0 \vdash$ An atomic T has an atomic model iff there is a listing of the principal types of T.

So AMT can be restated as: If T is atomic then there is a listing of the principal types of T.

By considering trees of types and coding trees into theories, AMT can be restated as: If V is a tree with isolated paths dense, then there is a listing of the isolated paths of V.

Well, that is sort of true...
Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.
The computability-theoretic content of AMT

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff every decidable atomic theory has an X-decidable atomic model.

Cor. $\text{WKL}_0 \nvdash \text{AMT}$.
Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff every decidable atomic theory has an X-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare; Conidis) Every decidable atomic theory has an X-decidable atomic model iff no Δ^0_2 function dominates every X-computable function.
The computability-theoretic content of AMT

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff every decidable atomic theory has an X-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare; Conidis) Every decidable atomic theory has an X-decidable atomic model iff no Δ^0_2 function dominates every X-computable function.

Cor. $\text{WKL}_0 \nvDash \text{AMT}$.
The reverse-mathematical content of AMT

ADS: Every infinite linear order has an infinite ascending or descending sequence.

A linear order is **stable** if every element has either finitely many predecessors or finitely many successors.

SADS: Every stable infinite linear order has an infinite ascending or descending sequence.

Thm (Hirschfeldt and Shore). \(RT^2 \leftrightarrow ADS \leftrightarrow SADS. \)
The reverse-mathematical content of AMT

ADS: Every infinite linear order has an infinite ascending or descending sequence.

A linear order is **stable** if every element has either finitely many predecessors or finitely many successors.

SADS: Every stable infinite linear order has an infinite ascending or descending sequence.

Thm (Hirschfeldt and Shore). \(RT^2 \leftrightarrow ADS \leftrightarrow SADS. \)

Thm (Hirschfeldt, Shore, and Slaman). \(SADS \leftrightarrow AMT \)
The reverse-mathematical content of AMT

ADS: Every infinite linear order has an infinite ascending or descending sequence.

A linear order is **stable** if every element has either finitely many predecessors or finitely many successors.

SADS: Every stable infinite linear order has an infinite ascending or descending sequence.

Thm (Hirschfeldt and Shore). \(\mathsf{RT}_2^2 \leftrightarrow \mathsf{ADS} \leftrightarrow \mathsf{SADS} \).

Thm (Hirschfeldt, Shore, and Slaman). \(\mathsf{SADS} \leftrightarrow \mathsf{AMT} \).

Thm (Hirschfeldt, Shore, and Slaman). AMT is \(\Pi^1_1 \)-conservative over \(\Sigma^0_1 \), \(\mathcal{B} \Sigma^0_2 \), and \(\mathcal{I} \Sigma^0_2 \).
AMT and genericity

Being an atom of a decidable theory is a Π^0_1 property.
AMT and genericity

Being an atom of a decidable theory is a Π^0_1 property.

Π^0_1G: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there is a $G \in 2^\omega$ that meets each D_i.
Being an atom of a decidable theory is a Π^0_1 property.

Π^0_1G: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there is a $G \in 2^\omega$ that meets each D_i.

Π^0_1G implies AMT.
AMT and genericity

Being an atom of a decidable theory is a Π^0_1 property.

Π^0_1G: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there is a $G \in 2^\omega$ that meets each D_i.

Π^0_1G implies AMT.

Thm (Conidis). AMT implies Π^0_1G over $I\Sigma^0_2$.
AMT and genericity

Being an atom of a decidable theory is a Π^0_1 property.

$\Pi^0_1 G$: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there is a $G \in 2^\omega$ that meets each D_i.

$\Pi^0_1 G$ implies AMT.

Thm (Conidis). AMT implies $\Pi^0_1 G$ over $I\Sigma^0_2$.

Thm (Hirschfeldt, Shore, and Slaman). $\Pi^0_1 G$ is Π^1_1-conservative over $I\Sigma^0_1$ and $I\Sigma^0_2$, but implies $I\Sigma^0_2$ over $B\Sigma^0_2$.
First-Order Questions

NO MATTER HOW MANY MUST DIE, NO MATTER HOW MANY CITIES MUST BE DESTROYED... WE WILL, IN THE END, BE VICTORIOUS! REMEMBER THIS ALWAYS... AND GIVE UP YOUR BODIES, YOUR MINDS... YOUR VERY LIVES TO OUR ULTIMATE GOAL...

"HYDRA OVER ALL!"

HAIL HYDRA! IMMORTAL HYDRA!

WE SHALL NEVER BE DESTROYED!

CUT OFF ONE ARM, AND TWO MORE WILL TAKE ITS PLACE!

HYDRA, MOST SWIFT OF ALL INDESTRUCTIBLE ENEMIES! HYDRA, DEFEATED OF ALL THREATS TO DEMOCRACY AND WORLD PEACE...

AND IF YOU THINK THIS IS JUST ANY OLD HYDRA MEETING... READ ON, BROTHER, AND FIND OUT HOW WRONG YOU CAN BE...
The following is an attempt to capture the difference between AMT and $\Pi^0_1 G$:

$\Pi^0_1 GA$: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there are $g_s \in 2^\omega$ for $s \in \omega$ s.t.

$$\forall i \exists \sigma \in D_i \forall^\infty s (g_s \succ \sigma).$$
The following is an attempt to capture the difference between AMT and $\Pi^0_1 G$:

$\Pi^0_1 \text{GA}$: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there are $g_s \in 2^\omega$ for $s \in \omega$ s.t.

$$\forall i \exists \sigma \in D_i \forall s (g_s \succ \sigma).$$

Thm (Hirschfeldt, Lange, and Shore). $\Pi^0_1 \text{GA}$ is provable from $I\Sigma^0_2$ and equivalent to it over $B\Sigma^0_2$.
The following is an attempt to capture the difference between AMT and $\Pi^0_1 G$:

$\Pi^0_1 GA$: For any uniformly Π^0_1 dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there are $g_s \in 2^\omega$ for $s \in \omega$ s.t.

$$\forall i \exists \sigma \in D_i \forall \infty s \ (g_s \succ \sigma).$$

Thm (Hirschfeldt, Lange, and Shore). $\Pi^0_1 GA$ is provable from $I\Sigma^0_2$ and equivalent to it over $B\Sigma^0_2$.

Open Question. Does AMT + $\Pi^0_1 GA$ imply $\Pi^0_1 G$?
$\Pi^0_n G$ For any uniformly Π^0_n dense predicates D_0, D_1, \ldots on $2^{<\omega}$, there is a $G \in 2^\omega$ that meets each D_i.

Thm (Hirschfeldt, Lange, and Shore). $\Pi^0_n G$ is provable from $I\Sigma^0_n$ and equivalent to it over $B\Sigma^0_n$.

\(\Pi^0_n G \) For any uniformly \(\Pi^0_n \) dense predicates \(D_0, D_1, \ldots \) on \(2^{< \omega} \), there is a \(G \in 2^\omega \) that meets each \(D_i \).

\(\Pi^0_n GA \) For any uniformly \(\Pi^0_n \) dense predicates \(D_0, D_1, \ldots \) on \(2^{< \omega} \), there are \(g_{s_0, \ldots, s_{n-1}} \in 2^\omega \) for \(s_0, \ldots, s_{n-1} \in \omega \) s.t.

\[
\forall i \exists \sigma \in D_i \forall^\infty s_0 \forall^\infty s_1 \cdots \forall^\infty s_{n-1} \ (g_{s_0, \ldots, s_{n-1}} \succ \sigma).
\]
\(\Pi^0_n G \) For any uniformly \(\Pi^0_n \) dense predicates \(D_0, D_1, \ldots \) on \(2^{<\omega} \), there is a \(G \in 2^\omega \) that meets each \(D_i \).

\(\Pi^0_n GA \) For any uniformly \(\Pi^0_n \) dense predicates \(D_0, D_1, \ldots \) on \(2^{<\omega} \), there are \(g_{s_0, \ldots, s_{n-1}} \in 2^\omega \) for \(s_0, \ldots, s_{n-1} \in \omega \) s.t.

\[
\forall i \exists \sigma \in D_i \, \forall^\infty s_0 \, \forall^\infty s_1 \, \cdots \, \forall^\infty s_{n-1} \left(g_{s_0, \ldots, s_{n-1}} \succ \sigma\right).
\]

Thm (Hirschfeldt, Lange, and Shore). \(\Pi^0_n GA \) is provable from \(I\Sigma^0_n \) and equivalent to it over \(B\Sigma^0_n \).
Let us be more precise about the restatement of AMT as: If V is a tree with isolated paths dense, then there is a listing of the isolated paths of V.

An atom of a tree V is a node contained in exactly one infinite path of V. V is atomic if every node of V can be extended to an atom. V is strongly atomic if for every finite sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a finite sequence τ_0, \ldots, τ_n of atoms of V s.t. $\sigma_i \preceq \tau_i$.
Atomic trees

Let us be more precise about the restatement of AMT as: If V is a tree with isolated paths dense, then there is a listing of the isolated paths of V.

An **atom** of a tree V is a node contained in exactly one infinite path of V.

V is **atomic** if every node of V can be extended to an atom.
Let us be more precise about the restatement of AMT as: If V is a tree with isolated paths dense, then there is a listing of the isolated paths of V.

An **atom** of a tree V is a node contained in exactly one infinite path of V.

V is **atomic** if every node of V can be extended to an atom.

V is **strongly atomic** if for every finite sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a finite sequence τ_0, \ldots, τ_n of atoms of V s.t. $\sigma_i \preceq \tau_i$.
Atomic and strongly atomic coincide for theories:

If a theory T is atomic and $\varphi_0(\vec{x}_0), \ldots, \varphi_n(\vec{x}_n)$ are consistent with T, then we can extend them all simultaneously to atoms by extending $\varphi_0(\vec{y}_0) \land \cdots \land \varphi_n(\vec{y}_n)$, where the \vec{y}_i are pairwise disjoint.
The Atomic Tree Theorem

Atomic and strongly atomic coincide for theories:

If a theory T is atomic and $\varphi_0(\vec{x}_0), \ldots, \varphi_n(\vec{x}_n)$ are consistent with T, then we can extend them all simultaneously to atoms by extending $\varphi_0(\vec{y}_0) \land \cdots \land \varphi_n(\vec{y}_n)$, where the \vec{y}_i are pairwise disjoint.

Thm (Hirschfeldt, Lange, and Shore). The statement that every atomic tree is strongly atomic is equivalent to $\mathsf{B}\Sigma^0_2$.

Open Question. Does $\mathsf{AMT} (+ \Pi^0_1 \mathsf{GA})$ imply ATT?
Atomic and strongly atomic coincide for theories:

If a theory T is atomic and $\varphi_0(\vec{x}_0), \ldots, \varphi_n(\vec{x}_n)$ are consistent with T, then we can extend them all simultaneously to atoms by extending $\varphi_0(\vec{y}_0) \land \cdots \land \varphi_n(\vec{y}_n)$, where the \vec{y}_i are pairwise disjoint.

Thm (Hirschfeldt, Lange, and Shore). The statement that every atomic tree is strongly atomic is equivalent to $B\Sigma^0_2$.

AMT is equivalent to: If V is a strongly atomic tree then there is a listing of the isolated paths of V.
Atomic and strongly atomic coincide for theories:

If a theory T is atomic and $\varphi_0(\vec{x}_0), \ldots, \varphi_n(\vec{x}_n)$ are consistent with T, then we can extend them all simultaneously to atoms by extending $\varphi_0(\vec{y}_0) \land \cdots \land \varphi_n(\vec{y}_n)$, where the \vec{y}_i are pairwise disjoint.

Thm (Hirschfeldt, Lange, and Shore). The statement that every atomic tree is strongly atomic is equivalent to $B\Sigma^0_2$.

AMT is equivalent to: If V is a strongly atomic tree then there is a listing of the isolated paths of V.

ATT: If V is an atomic tree then there is a listing of the isolated paths of V.
The Atomic Tree Theorem

Atomic and strongly atomic coincide for theories:

If a theory T is atomic and $\varphi_0(\vec{x}_0), \ldots, \varphi_n(\vec{x}_n)$ are consistent with T, then we can extend them all simultaneously to atoms by extending $\varphi_0(\vec{y}_0) \land \cdots \land \varphi_n(\vec{y}_n)$, where the \vec{y}_i are pairwise disjoint.

Thm (Hirschfeldt, Lange, and Shore). The statement that every atomic tree is strongly atomic is equivalent to $B\Sigma^0_2$.

AMT is equivalent to: If V is a strongly atomic tree then there is a listing of the isolated paths of V.

ATT: If V is an atomic tree then there is a listing of the isolated paths of V.

$\Pi^0_1 G$ implies ATT, which in turn implies AMT.

Open Question. Does AMT ($+ \Pi^0_1 GA$) imply ATT?
Further variants

$\Pi^0_1^{GA}$ is a miniaturization of $\Pi^0_1^{G}$. Here is a miniaturization of ATT:

FATT: If V is an atomic tree then for every sequence $\sigma_0,\ldots,\sigma_n \in V$, there is a sequence P_0,\ldots,P_n of isolated paths of V s.t. $\sigma_i \prec P_i$.
Further variants

$\Pi^0_1 \text{GA}$ is a miniaturization of $\Pi^0_1 \text{G}$. Here is a miniaturization of ATT:

FATT: If V is an atomic tree then for every sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $\sigma_i \prec P_i$.

FATT is implied by $B\Sigma^0_2$ and by ATT (and so does not imply $B\Sigma^0_2$).

Thm (Hirschfeldt, Lange, and Shore). FATT does not hold in RCA$_0$.

Open Question. Does $\Pi^0_1 \text{GA}$ imply FATT?

ATT$^{-}$: Let V be a tree s.t. for every sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $\sigma_i \prec P_i$. Then there is a listing of the isolated paths of V.

ATT implies ATT$^{-}$, which in turn implies AMT.

Open Question. Does AMT ($+\Pi^0_1 \text{GA}$) imply ATT$^{-}$?
Π₁⁰GA is a miniaturization of Π₁⁰G. Here is a miniaturization of ATT:

FATT: If V is an atomic tree then for every sequence $σ_0, \ldots, σ_n ∈ V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $σ_i ≺ P_i$.

FATT is implied by BΣ₂ and by ATT (and so does not imply BΣ₂).

Thm (Hirschfeldt, Lange, and Shore). FATT does not hold in RCA₀.

Open Question. Does Π₁⁰GA imply FATT?
Further variants

$\Pi^0_1 \text{GA}$ is a miniaturization of $\Pi^0_1 \text{G}$. Here is a miniaturization of ATT:

FATT: If V is an atomic tree then for every sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $\sigma_i \prec P_i$.

FATT is implied by $\text{B}\Sigma^0_2$ and by ATT (and so does not imply $\text{B}\Sigma^0_2$).

Thm (Hirschfeldt, Lange, and Shore). FATT does not hold in RCA$_0$.

Open Question. Does $\Pi^0_1 \text{GA}$ imply FATT?

ATT$^-$: Let V be a tree s.t. for every sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $\sigma_i \prec P_i$. Then there is a listing of the isolated paths of V.
Further variants

$\Pi^0_1 \text{GA}$ is a miniaturization of $\Pi^0_1 \Theta$. Here is a miniaturization of ATT:

FATT: If V is an atomic tree then for every sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $\sigma_i \prec P_i$.

FATT is implied by $B\Sigma^0_2$ and by ATT (and so does not imply $B\Sigma^0_2$).

Thm (Hirschfeldt, Lange, and Shore). FATT does not hold in RCA$_0$.

Open Question. Does $\Pi^0_1 \text{GA}$ imply FATT?

ATT$^-$: Let V be a tree s.t. for every sequence $\sigma_0, \ldots, \sigma_n \in V$, there is a sequence P_0, \ldots, P_n of isolated paths of V s.t. $\sigma_i \prec P_i$. Then there is a listing of the isolated paths of V.

ATT implies ATT$^-$, which in turn implies AMT.

Open Question. Does AMT (+ $\Pi^0_1 \text{GA}$) imply ATT$^-$?
Homogeneous Models

Cartoon by George du Maurier (Punch, 1895)

TRUE HUMILITY

Right Reverend Host: “I’m afraid you’ve got a bad egg, Mr. Jones!”
The Curate: “Oh no, my lord, I assure you! Parts of it are excellent!”
Classically, the following definitions are equivalent:

1. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

2. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.
Classically, the following definitions are equivalent:

1. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

2. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

The implication from 2 to 1 is equivalent to ACA$_0$.

Homogeneous models with the same type spectra are isomorphic. This statement is equivalent to ACA$_0$.

Every \mathcal{T} has a homogeneous model. Thm (Macintyre and Marker; Csima, Harizanov, Hirschfeldt, and Soare; Lange; Belanger). This statement is equivalent to WKL$_0$.

Uniqueness and existence of homogeneous models
Classically, the following definitions are equivalent:

1. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

2. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

The implication from 2 to 1 is equivalent to ACA_0.

Homogeneous models with the same type spectra are isomorphic.

This statement is equivalent to ACA_0.
Classically, the following definitions are equivalent:

1. \(M \) is homogeneous if for all \(\vec{a} \equiv \vec{b} \in M \), \((M, \vec{a}) \cong (M, \vec{b}) \).

2. \(M \) is homogeneous if for all \(\vec{a} \equiv \vec{b} \in M \) and all \(c \in M \), there is a \(d \in M \) s.t. \(\vec{a}c \equiv \vec{b}d \).

The implication from 2 to 1 is equivalent to ACA\(_0\).

Homogeneous models with the same type spectra are isomorphic.

This statement is equivalent to ACA\(_0\).

Every \(T \) has a homogeneous model.

Thm (Macintyre and Marker; Csima, Harizanov, Hirschfeldt, and Soare; Lange; Belanger). This statement is equivalent to WKL\(_0\).
An alternate definition

Recall:

1. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, $(\mathcal{M}, \vec{a}) \simeq (\mathcal{M}, \vec{b})$.

2. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

The following definition is sometimes reverse-mathematically better behaved:

3. \mathcal{M} is homogeneous if for all $\vec{a}_0 \equiv \vec{b}_0, \ldots, \vec{a}_n \equiv \vec{b}_n \in \mathcal{M}$ and $\vec{c}_0, \ldots, \vec{c}_n \in \mathcal{M}$, there are $\vec{d}_0, \ldots, \vec{d}_n \in \mathcal{M}$ s.t. $\vec{a}_i \vec{c}_i \equiv \vec{b}_i \vec{d}_i$ for $i \leq n$.

Thm. The implication from 2 to 3 is equivalent to $\text{I} \Sigma_0^2$.
An alternate definition

Recall:

1. M is homogeneous if for all $\vec{a} \equiv \vec{b} \in M$, $(M, \vec{a}) \simeq (M, \vec{b})$.

2. M is homogeneous if for all $\vec{a} \equiv \vec{b} \in M$ and all $c \in M$, there is a $d \in M$ s.t. $\vec{ac} \equiv \vec{bd}$.

The following definition is sometimes reverse-mathematically better behaved:

3. M is **homogeneous** if for all $\vec{a}_0 \equiv \vec{b}_0, \ldots, \vec{a}_n \equiv \vec{b}_n \in M$ and $\vec{c}_0, \ldots, \vec{c}_n \in M$, there are $\vec{a}_0, \ldots, \vec{a}_n \in M$ s.t. $\vec{a}_i \vec{c}_i \equiv \vec{b}_i \vec{d}_i$ for $i \leq n$.
Recall:

1. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

2. \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

The following definition is sometimes reverse-mathematically better behaved:

3. \mathcal{M} is **homogeneous** if for all $\vec{a}_0 \equiv \vec{b}_0, \ldots, \vec{a}_n \equiv \vec{b}_n \in \mathcal{M}$ and $\vec{c}_0, \ldots, \vec{c}_n \in \mathcal{M}$, there are $\vec{d}_0, \ldots, \vec{d}_n \in \mathcal{M}$ s.t. $\vec{a}_i \vec{c}_i \equiv \vec{b}_i \vec{d}_i$ for $i \leq n$.

Thm. The implication from 2 to 3 is equivalent to $\text{I} \Sigma^0_2$.
The Homogeneous Model Theorem

HMT (Goncharov; Peretyat’kin). Let S be a countable set of types of T. There is a countable homogeneous model with type spectrum S iff S satisfies the following closure conditions:

- $T \in S$
- closure under variable substitution
- closure under subtypes
- closure under extension (type / formula amalgamation)
- closure under type amalgamation
The Homogeneous Model Theorem

HMT (Goncharov; Peretyat’kin). Let S be a countable set of types of T. There is a countable homogeneous model with type spectrum S iff S satisfies the following closure conditions:

- $T \in S$
- closure under variable substitution
- closure under subtypes
- closure under extension (type / formula amalgamation)

 If $p(\bar{x}) \in S$ and $\varphi(\bar{x}\bar{y})$ is consistent with p then there is a $q(\bar{x}\bar{y}) \in S$ s.t. $p \cup \{\varphi\} \subseteq q$.
- closure under type amalgamation
The Homogeneous Model Theorem

HMT (Goncharov; Peretyat’kin). Let S be a countable set of types of T. There is a countable homogeneous model with type spectrum S iff S satisfies the following closure conditions:

- $T \in S$
- closure under variable substitution
- closure under subtypes
- closure under extension (type / formula amalgamation)

If $p(\bar{x}) \in S$ and $\varphi(\bar{x}\bar{y})$ is consistent with p then there is a $q(\bar{x}\bar{y}) \in S$ s.t. $p \cup \{\varphi\} \subseteq q$.

- closure under type amalgamation

If $p_0, p_1 \in S$ agree on shared variables then there is a $q \in S$ s.t. $p_0 \cup p_1 \subseteq q$.
The Homogeneous Model Theorem

HMT (Goncharov; Peretyat’kin). Let S be a countable set of types of T. There is a countable homogeneous model with type spectrum S iff S satisfies the following closure conditions:

- $T \in S$
- closure under variable substitution
- closure under subtypes
- closure under extension (type / formula amalgamation)

 If $p(\bar{x}) \in S$ and $\varphi(\bar{x}\bar{y})$ is consistent with p then there is a $q(\bar{x}\bar{y}) \in S$ s.t. $p \cup \{\varphi\} \subseteq q$.
- closure under type amalgamation

 If $p_0, \ldots, p_n \in S$ agree on shared variables and p_0 contains all such variables then there is a $q \in S$ s.t. $p_0 \cup \cdots \cup p_n \subseteq q$.
Some suggestive similarities

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.
Some suggestive similarities

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Lange). Every computable S closed under the HMT conditions is the type spectrum of a low-decidable homogeneous model.
Some suggestive similarities

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Lange). Every computable S closed under the HMT conditions is the type spectrum of a low-decidable homogeneous model.

Thm (Csima, Hirschfeldt, Knight, and Soare). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff every decidable atomic theory has an X-decidable atomic model.
Some suggestive similarities

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Lange). Every computable S closed under the HMT conditions is the type spectrum of a low-decidable homogeneous model.

Thm (Csima, Hirschfeldt, Knight, and Soare). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff every decidable atomic theory has an X-decidable atomic model.

Thm (Lange). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff for every computable S closed under the HMT conditions, there is an X-decidable homogeneous model with type spectrum S.

Thm (Hirschfeldt, Lange, and Shore). HMT and AMT are equivalent, over RCA0 and in the sense of Weihrauch reducibility.
Some suggestive similarities explained

Thm (Csima). Every decidable atomic theory has a low-decidable atomic model.

Thm (Lange). Every computable S closed under the HMT conditions is the type spectrum of a low-decidable homogeneous model.

Thm (Csima, Hirschfeldt, Knight, and Soare). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff every decidable atomic theory has an X-decidable atomic model.

Thm (Lange). Let $X \leq_T \emptyset'$. Then X is nonlow$_2$ iff for every computable S closed under the HMT conditions, there is an X-decidable homogeneous model with type spectrum S.

Thm (Hirschfeldt, Lange, and Shore). HMT and AMT are equivalent, over RCA$_0$ and in the sense of Weihrauch reducibility.
First-order issues

Without $\text{I} \Sigma_2^0$, the equivalence between AMT and HMT is sensitive to the choice of definitions of homogeneity and of closure under type amalgamation.

Principles connecting various versions of homogeneity and amalgamation can have complex behavior.
First-order issues

Without Σ^0_2, the equivalence between AMT and HMT is sensitive to the choice of definitions of homogeneity and of closure under type amalgamation.

Principles connecting various versions of homogeneity and amalgamation can have complex behavior.

Belanger isolated some that are equivalent to $\text{WKL}_0 \lor \Sigma^0_2$.
Without Σ^0_2, the equivalence between AMT and HMT is sensitive to the choice of definitions of homogeneity and of closure under type amalgamation.

Principles connecting various versions of homogeneity and amalgamation can have complex behavior.

Belanger isolated some that are equivalent to $WKL_0 \lor \Sigma^0_2$.

Hirschfeldt, Lange, and Shore isolated others that are provable from Π^0_1GA and equivalent to Σ^0_2 over $\mathcal{B}\Sigma^0_2$.
First-order issues

Without $\text{I} \Sigma^0_2$, the equivalence between AMT and HMT is sensitive to the choice of definitions of homogeneity and of closure under type amalgamation.

Principles connecting various versions of homogeneity and amalgamation can have complex behavior.

Belanger isolated some that are equivalent to $\text{WKL}_0 \lor \text{I} \Sigma^0_2$.

Hirschfeldt, Lange, and Shore isolated others that are provable from $\Pi^0_1 \text{GA}$ and equivalent to $\text{I} \Sigma^0_2$ over $\text{B} \Sigma^0_2$.

It is an open question whether these are equivalent to each other or to $\Pi^0_1 \text{GA}$.
Saturated Models

Figure 1:
Map showing the location of Starbucks coffee houses in and around downtown San Francisco, California, USA. In addition to these coffee shops, there are many other chain and independent stores in the area.
A degree d is **saturated-boundiing** if every decidable T each of whose types is computable has a d-decidable saturated model.
A degree d is **saturated-bounding** if every decidable T each of whose types is computable has a d-decidable saturated model.

Thm (Morley; Millar). T has a decidable saturated model iff there is a computable listing of the types of T.

Cor (Harris). If d is either high or PA then d is saturated-bounding.

Thm (Montalbán). Every saturated-bounding c.e. degree is high.

Open Problem. Characterize the saturated-bounding degrees.
A degree d is **saturated-bounding** if every decidable T each of whose types is computable has a d-decidable saturated model.

Thm (Morley; Millar). T has a decidable saturated model iff there is a computable listing of the types of T.

A **subenumeration** of a class C is a listing of sets that contains C.

Thm (Jockusch). TFAE for a degree d.

- There is a d-computable subenumeration of the computable sets.
- d is either high or PA.

Cor (Harris). If d is either high or PA then d is saturated-bounding.

Thm (Montalbán). Every saturated-bounding c.e. degree is high.

Open Problem. Characterize the saturated-bounding degrees.
A degree d is **saturated-bounding** if every decidable T each of whose types is computable has a d-decidable saturated model.

Thm (Morley; Millar). T has a decidable saturated model iff there is a computable listing of the types of T.

A **subenumeration** of a class C is a listing of sets that contains C.

Thm (Jockusch). TFAE for a degree d.
- There is a d-computable subenumeration of the computable sets.
- d is either high or PA.

Cor (Harris). If d is either high or PA then d is saturated-bounding.
A degree d is **saturated-bounding** if every decidable T each of whose types is computable has a d-decidable saturated model.

Thm (Morley; Millar). T has a decidable saturated model iff there is a computable listing of the types of T.

A **subenumeration** of a class C is a listing of sets that contains C.

Thm (Jockusch). TFAE for a degree d.
- There is a d-computable subenumeration of the computable sets.
- d is either high or PA.

Cor (Harris). If d is either high or PA then d is saturated-bounding.

Thm (Montalbán). Every saturated-bounding c.e. degree is high.
Saturated-bounding degrees

A degree \(d \) is **saturated-bounding** if every decidable \(T \) each of whose types is computable has a \(d \)-decidable saturated model.

Thm (Morley; Millar). \(T \) has a decidable saturated model iff there is a computable listing of the types of \(T \).

A **subenumeration** of a class \(C \) is a listing of sets that contains \(C \).

Thm (Jockusch). TFAE for a degree \(d \).

- There is a \(d \)-computable subenumeration of the computable sets.
- \(d \) is either high or PA.

Cor (Harris). If \(d \) is either high or PA then \(d \) is saturated-bounding.

Thm (Montalbán). Every saturated-bounding c.e. degree is high.

Open Problem. Characterize the saturated-bounding degrees.